10.1071/CH14639_AC ©CSIRO 2015 Australian Journal of Chemistry 2015, 68(8), 1237-1248

Supplementary Material

Aromatic Schiff bases multiply substituted with terminal ethynyl groups: potential building blocks for conjugated polymers and oligomers

Sabina Stahlová¹, Jan Sedláček¹, Jan Svoboda¹, Miroslav Polášek², Jiří Zedník^{1*}

¹ Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, CZ-128 43 Prague 2, Czech Republic

² J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic

*Correspondence to: J. Zedník (E - mail: jiri.zednik@natur.cuni.cz)

Fig. S1. FTIR spectra of MEAs.

Fig. S2. Raman spectra of MEAs.

Fig. S3. Normalized photoluminescence emission spectra of D1 and D2. Excitation wavelength = 340 nm.

Fig. S4. ¹HNMR (CD₂Cl₂, 400 MHz) spectrum of Pc(D1/hexyne).

Fig. S5. N_2 adsorption isotherm on Pc(D1) at 77 K.

Fig. S6. Uv-vis spectrum of Pc(D1/hexyne).

Table S1

The most important bands of the FTIR and Raman spectra of MEAs.

MEA	$v_{N=C} (cm^{-1})$		$v_{\rm NC-H} \ (\rm cm^{-1}) \qquad v_{\equiv \rm C-H} \ (\rm cm^{-1})$		$v_{C\equiv C} (cm^{-1})$	
	FTIR	Raman	FTIR	FTIR	FTIR	Raman
D1	1622	1620	2881	3269	2102	2100
D2	1619	1622	2895	3263; 3221	2096	2103
D3	1624	1625	2888	3282; 3212	2104	2105
D4	1631	1631	2907	3293	2107	2107
D5	1629	1628	2918	3280; 3213	2103	2103
T1	1617	1623	2875	3284	2104	2104
T2	1616	1625	2879	3288	2103	2106
Т3	1627	1625	2900	3280; 3205	2101	2098
T4	1624	1629	2885	3280; 3221	2104	2110

Table S2

Photoluminescence emission characteristics of D1 and D2. λ_{PLmax} is wavelength the photoluminescence emission maximum, τ_1 , τ_2 and τ_3 are the lifetimes of the photoluminescence components (their contributions are given in parentheses).

MEA	$\lambda_{ ext{PLmax}} [ext{nm}]$	$ au_1 [ns]^{b)}$	$\tau_2 [ns]^{b)}$	$\tau_3 [ns]^{b)}$		
D1	428 ^{a)}	3.2 (10%)	1.1 (52 %)	0.06 (38%)		
D2	419 ^{a)}	1.3 (90 %)	0.3 (10 %)			
^{a)} excitation wavelength = 340 nm						

a) excitation wavelength = 340 nm

^{b)} excitation wavelength = 378 nm

Table S3

	Content in wt. %		N/C mole ratio		
Sample	С	Н	Ν	Polymerization	Polymer
				feed	
Pc(D1)	80.04	4.01	5.16	17	18.10
Pc(D1/hexyne)	78.35	5.89	4.10	29	22.29

Results of elemental analysis of Pc(D1) and Pc(D1/hexyne).