Supplementary Material

An Efficient Microwave Synthesis of Imines

Emily C. Border,^A Victoria L. Blair,^A and Philip C. Andrews^{A,B} ^ASchool of Chemistry, Monash University, Clayton, Vic. 3800, Australia. ^BCorresponding author. Email: phil.andrews@monash.edu

General procedure for compounds (1-32). To a microwave vial containing 3Å molecular sieves; 3 ml of dry DCM was added and allowed to stir. The selected amine (2 mmol) and the chosen aldehyde (2 mmol) were added consecutively and the microwave vial capped. This was reacted in a microwave reactor at 50°C, 300W for 10 minutes, unless otherwise stated. The reaction mixture is filtered and the solvent removed *in vacuo* to yield the desired product.

(*S*)-N-(4-methoxybenzylidene)-α-methylbenzylamine 1a. The reactants; (*S*)-N-methylbenzylamine (0.26 ml, 2 mmol) and *p*-Anisaldehyde (0.24 ml, 2 mmol) were reacted according to the general procedure. An opaque oil was obtained: 0.47 g, 98 % yield. ¹H NMR (400 MHz, CDCl₃): δ 8.21 (1H, S, N=C(*H*)-), 7.64 (2H, d, ${}^{3}J_{HH}$: 8.8 Hz, *o*-Ar), 7.34 (2H, d, 7.2 Hz, *o*-Ar), 7.24 (2H, t, ${}^{3}J_{HH}$: 7.4 Hz, *m*-Ar), 7.14 (1H, t, ${}^{3}J_{HH}$: 8.0 Hz, *p*-Ar), 6.83 (2H, d, ${}^{3}J_{HH}$: 8.8 Hz, *m*-Ar), 4.41 (1H, q, ${}^{3}J_{HH}$: 6.8 Hz, PhC(*H*)CH₃), 3.73 (3H, s, OCH₃), 1.50 (3H, d, ${}^{3}J_{HH}$: 7.2 Hz, PhC(H)CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 161.7 (*ipso*-C), 158.9 (N=C), 145.6 (ArC), 129.9 (*ortho*-C), 129.5 (*meta*-C), 128.5 (*ortho*-C), 126.9 (*para*-C), 126.7 (*meta*-C), 114.0 (*meta*-C), 69.7 (PhCH(Me)), 55.4 (OMe), 24.9 (PhCH(Me)-). ESI-MS: m/z [M+1]⁺ calcd for C₁₆H₁₇NO: 240.3180; found: 240.1385.

(*S*)-N-(2-methoxybenzylidene)-α-methylbenzylamine 1b. The reactants; (*S*)-N-methylbenzylamine (0.26 ml, 2 mmol) and *o*-Anisaldehyde (0.24 ml, 2 mmol) were reacted according to the general procedure. An opaque oil was obtained: 0.47 g, 98 % yield. ¹H NMR (300 MHz, CDCl3): δ 8.90 (1H, s, N=C(*H*)-), 8.14 (1H, dd, ${}^{3}J_{\text{HH}}$: 7.8 Hz, *o*-Ar), 7.51 (2H, d, ${}^{3}J_{\text{HH}}$: 7.2 Hz, *o*-Ar), 7.40 (3H, m, *m*-Ar), 7.29 (1H, t, ${}^{3}J_{\text{HH}}$: 7.4 Hz, *p*-Ar), 7.04 (1H, t, ${}^{3}J_{\text{HH}}$: 7.5 Hz, *p*-Ar), 6.93 (1H, d, ${}^{3}J_{\text{HH}}$: 8.4 Hz, *m*-Ar), 4.63 (1H, q, ${}^{3}J_{\text{HH}}$: 6.3 Hz, PhC(*H*)CH₃), 3.90 (3H, s, OCH₃), 1.67 (3H, d, ${}^{3}J_{\text{HH}}$: 6.3 Hz, PhC(H)CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 158.8 (N=C), 155.5 (ArC-OMe), 145.6 (ArC), 131.8 (*para*-C), 128.4 (*meta*-C), 127.6 (*ortho*-C), 126.8 (*ortho*-C), 126.7 (*para*-C), 124.5 (ArC), 120.8 (*meta*-C), 110.9 (*meta*-C), 70.1 (PhCH(Me)), 55.5 (OMe), 25.1 (PhCH(*Me*)-). ESI-MS: *m*/*z* [M+1]⁺ calcd for C₁₆H₁₇NO: 240.3180; found: 240.1382.

(*S*)-N-(2-methoxybenzylidene)-α-methylbenzylamine 1c. The reactants; (*S*)-N-methylbenzylamine (0.26 ml, 2 mmol) and *m*-Anisaldehyde (0.24 ml, 2 mmol) were reacted according to the general procedure. An opaque oil was obtained: 0.46 g, 97 % yield. ¹H NMR (300 MHz, CDCl3): δ 8.30 (1H, s, N=C(*H*)-), 7.39 (3H, t, ${}^{3}J_{HH}$: 7.8 Hz, *m*-Ar, *p*-Ar), 7.28 (4H, m, *o*-Ar), 7.20 (1H, t, ${}^{3}J_{HH}$: 6.6 Hz, *m*-Ar), 6.92 (1H, m, *o*-*p*-Ar), 4.50 (1H, q, ${}^{3}J_{HH}$: 6.6 Hz, PhC(*H*)CH₃), 3.79 (3H, s, OCH₃), 1.56 (3H, d, ${}^{3}J_{HH}$: 6.6 Hz, PhC(H)CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 159.9 (ArC-OMe), 159.4 (N=C), 145.2 (ArC), 137.9 (ArC), 129.6 (*meta*-C), 128.6 (*meta*-C), 128.5 (*ortho*-C), 126.9 (*para*-C), 121.5 (*ortho*-C), 117.2 (*para*-C), 112.1 (*ortho*-C), 69.7 (PhCH(Me)), 55.4 (OMe), 24.9 (PhCH(*Me*)-). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₆H₁₇NO: 240.3180; found: 240.1382. **N-[[4-methoxyphenyl]methylene]-benzenamine 2.** The reactants aniline (0.18 ml, 2 mmol) and *p*-Anisaldehyde (0.24 ml, 2 mmol) were reacted according to the general procedure. An off white crystalline solid was obtained: 0.41 g, 98% yield. ¹H NMR (300 MHz, CDCl₃): δ 8.39 (1H, s, N=C(H)), 7.86 (2H, d, ³J_{HH}: 6.9 Hz, *ortho*-H), 7.39 (2H, t, ³J_{HH}: 8.4 Hz, *meta*-H), 7.22 (3H, m, *para*-H and *ortho*-H) 7.00 (2H, d, ³J_{HH}: 8.7 Hz, *meta*-H), 3.88 (3H, s, OCH₃). ¹³C NMR (75 MHz, CDCl₃): 162.4 (*ipso*-C), 159.8 (N=CH), 152.6 (*ipso*-C), 130.7 (*ipso*-C), 129.3 (*meta*-C), 125.7 (*para*-C), 121.0 (*ortho*-C), 114.3 (*meta*-C), 55.6 (OCH₃). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₄H₁₃NO: 212.2640; found: 212.1073.

N-[[4-methoxyphenyl]methylene]-2-propen-1-amine 3. The reactants allylamine (0.15 ml, 2 mmol) and *p*-Anisaldehyde (0.24 ml, 2 mmol) were reacted according to the general procedure. A yellow oil was obtained: 0.34 g, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 8.21 (1H, s, N=C(H)), 7.69 (2H, d, ³J_{HH}: 8.4 Hz, *ortho*-H), 6.90 (2H, d, ³J_{HH}: 8.4 Hz, *meta*-H), 6.05 (1H, m, -C(H)=CH₂), 5.19 (2H, m, -C(H)=CH₂), 4.21 (2H, d, ³J_{HH}: 8.8 Hz, N(CH₂)), 3.82 (3H, s, OCH₃). ¹³C NMR (75 MHz, CDCl₃): δ 161.7 (*para*-C-OMe), 1.61.4 (N=C), 136.3 (-C(H)=CH₂), 129.8 (*ortho*-C-Ar), 129.2 (Ar(C)C=N), 115.9 (-C(H)=CH₂), 114.0 (*meta*-C-Ar), 63.5 (OCH₃), 55.4 (N(CH₂)). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₁H₁₃NO: 176.2310; found: 176.1069.

N-[[4-methoxyphenyl]methylene]-ethanol 4. The reactants ethanolamine (0.12 ml, 2 mmol) and *p*-Anisaldehyde (0.24 ml, 2 mmol) were reacted according to the general procedure. An off white crystalline solid was obtained: 0.34 g, 96 % yield. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (1H, s, N=C(H)), 7.60 (2H, d, ${}^{3}J_{\text{HH}}$: 14.4 Hz, *ortho*-(H)-Ar), 6.85 (2H, d, ${}^{3}J_{\text{HH}}$: 16.8, *meta*-(H)-Ar), 3.90 (2H, t, ${}^{3}J_{\text{HH}}$: 10.4 Hz, N-CH₂-), 3.84 (3H, s, OCH₃), 3.72 (2H, t, ${}^{3}J_{\text{HH}}$: 10.4 Hz, CH₂-OH), 2.00 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃): δ 162.8 (*ipso*-C), 162.2 (N=C), 130.1 (*ortho*-C), 129.2 (*ipso*-C), 114.4 (*meta*-C), 63.5 (N(CH₂)), 62.9 ((CH₂)OH), 55.7 (OCH₃). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₁H₁₃NO₂: 180.2270; found: 180.1019.

α-methyl-N-(2-hydroxyphenyl)-benzenemethanamine 5. The reactants αmethylbenzylamine (0.26 ml, 2 mmol) and salicaldehyde (0.21 ml, 2 mmol) were reacted according to the general procedure. A bright yellow crystalline solid was obtained: 0.44 g, 98 % yield. ¹H NMR (400 MHz, CDCl₃): δ 13.42 (1H, br. S, OH), 8.30 (1H, s, N=C(H)), 7.20 (7H, m, Ar-H), 6.87 (1H, d, ${}^{3}J_{HH}$: 8.4 Hz, *meta*(H)-Ar(OH)), 6.77 (1H, t, ${}^{3}J_{HH}$: 14.8 Hz, *meta*(H)-Ar(OH)), 4.45 (1H, q, ${}^{3}J_{HH}$: 13.6 Hz, PhC(H)CH₃-), 1.54 (3H, d, ${}^{3}J_{HH}$: 6.8 Hz, PhC(H)CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 163.6 ((N=C), 161.2 (*ortho*-C-Ar-OH), 143.9 (Ar(C)-CH(CH₃)), 132.4 (*para*-C-Ar), 131.5 (*ortho*-C-Ar), 128.8 (*meta*-C-Ar), 127.4 (*ortho*-C-Ar), 126.5 (*para*-C-Ar), 118.9 (*meta*-C-Ar), 118.7 (Ar(C)C=N), 117.1 (*meta*-C-Ar), 68.7 (Ar(CH)CH₃), 25.1 (CH(CH₃). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₅H₁₅NO: 226.2910; found: 226.1227.

N-[(2-hydroxyphenyl)methylene]-benzenamine 6. The reactants aniline (0.18 ml, 2 mmol) and salicaldehyde (0.21 ml, 2 mmol) were reacted according to the general procedure. A bright yellow crystalline solid was obtained: 0.38 g, 99 % yield. ¹H NMR

(300 MHz, CDCl₃): δ 13.24 (1H, br. S, OH), 8.65 (1H, s, N=C(*H*)), 7.43 (4H, m, Ar-*H*), 7.32 (3H, m, Ar-*H*), 7.04 (1H, d, ³*J*_{HH}: 7.5 Hz, *meta*(*H*)-Ar), 6.97 (1H, t, ³*J*_{HH}: 15 Hz, *meta*(*H*)-Ar). ¹³C NMR (75 MHz, CDCl₃): δ 162.8 (N=C), 161.3 (*ortho*-C-Ar-OH), 148.6 (Ar(*C*)-N), 133.4 (*para*-C-Ar), 132.5 (*ortho*-C-Ar), 132.5 (*meta*-C-Ar), 127.1 (*ortho*-C-Ar), 121.3 (*meta*-C-Ar), 119.2 (Ar(*C*)C=N), 117.4 (*meta*-C-Ar). ESI-MS: *m*/*z* [M+1]⁺ calcd for C₁₃H₁₁NO: 198.2370; found: 198.0906.

N-[(2-hydroxyphenyl)methylene]-2-propen-1-amine 7. The reactants allylamine (0.15 ml, 2 mmol) and salicaldehyde (0.21 ml, 2 mmol) were reacted according to the general procedure. A bright yellow oil was obtained: 0.31 g, 96 % yield. ¹H NMR (400 MHz, CDCl₃): δ 13.37 (1H, br. s, OH), 8.30 (1H, s, N=C(*H*)), 7.26 (1H, t, ${}^{3}J_{HH}$: 16 Hz, *para*(*H*)-Ar), 7.20 (1H, d, ${}^{3}J_{HH}$: 7.6 Hz, *ortho*(*H*)-Ar), 6.92 (1H, d, ${}^{3}J_{HH}$: 8 Hz, *meta*(*H*)-Ar), 6.83 (1H, t, ${}^{3}J_{HH}$: 14.8 Hz, *meta*(*H*)-Ar), 65.97 (1H, m, -C(*H*)=CH₂), 5.17 (2H, m, -C(H)=CH₂), 4.18 (2H, d, ${}^{3}J_{HH}$: 7.0 Hz, N(CH₂)). ¹³C NMR (100 MHz, CDCl₃): δ 165.7 (N=C), 161.3 (*ortho*-C-Ar-OH), 134.9 (*para*-C-Ar), 132.4 (*ortho*-C-Ar), 131.4 (-C(H)=CH₂), 118.9 (Ar(C)C=N), 118.6 (*meta*-C-Ar), 117.1 (-C(H)=CH₂), 116.6 (*meta*-C-Ar), 61.4 (N(CH₂)). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₀H₁₁NO: 162.2040; found: 162.0911.

N-[(2-hydroxyphenyl)methylene]-ethanol 8. The reactants ethanolamine (0.12 ml, 2 mmol) and salicaldehyde (0.21 ml, 2 mmol) were reacted according to the general procedure. An orange was obtained: 0.32 g, 97 % yield. ¹H NMR (400 MHz, CDCl₃): δ 13.20 (1H, br. s, OH), 8.37 (1H, s, N=C(*H*)), 7.30 (1H, t, ${}^{3}J_{HH}$: 15.6, *ortho*-H), 7.24 (1H, d, ${}^{3}J_{HH}$: 7.6 Hz, *para*(*H*)-Ar), 6.94 (1H, d, ${}^{3}J_{HH}$: 8.4 Hz, *meta*(*H*)-Ar), 6.87 (1H, t, ${}^{3}J_{HH}$: 15.2 Hz, *meta*(*H*)-Ar), 3.90 (2H, t, ${}^{3}J_{HH}$: 10.2 Hz, N-CH₂-), 3.75 (2H, t, ${}^{3}J_{HH}$: 10.1 Hz, - CH₂OH). ¹³C NMR (100 MHz, CDCl₃): δ 166.9 (N=C), 161.5 (*ortho*-C-Ar-OH), 132.6 (*para*-C-Ar), 131.6 (*ortho*-C-Ar), 118.7 (*meta*-C-Ar), 117.2 (*meta*-C-Ar), 62.1 (N=C(H)), 62.7 (-CH₂OH)). ESI-MS: *m*/z [M+1]⁺ calcd for C₉H₁₁NO₂: 166.1920; found: 166.0861.

 α -methyl-N-(2-bromophenyl)-benzenemethanamine 9. The reactants αmethylbenzylamine (0.26 ml, 2 mmol) and 2-bromobenzaldehyde (0.23 ml, 2 mmol) were reacted according to the general procedure. A light yellow oil was obtained: 0.56 g, 98 % yield. ¹H NMR (300 MHz, CDCl₃): δ 8.76 (1H, s, N=CH), 8.03 (1H, d, ³J_{HH}: 7.8 Hz, ortho-Ar), 7.55 (1H, d, ³J_{HH}: 7.8 Hz, ortho-Ar), 7.46 (2H, d, ³J_{HH}: 8.1 Hz, ortho-Ar), 7.35 (3H, m, Ar-H), 7.26 (2H, m, Ar-H), 4.64 (1H, q, ³J_{HH}: 19.8 Hz, PhC(H)CH₃-), 1.62 (3H, d, ${}^{3}J_{\text{HH}}$: 6.6 Hz, PhC(H)CH₃). 13 C NMR (75 MHz, CDCl₃): δ 158.6 (N=C), 145.0 (Ar(C)-CH(CH₃)), 134.9 (Ar(C)C=N), 133.1 (meta-C-Ar), 131.8 (para-C-Ar), 129.2 (meta-C-Ar), 128.6 (meta-C-Ar), 127.7 (ortho-C-Ar), 127.0 (ortho-C-Ar), 126.7 (para-C-Ar), 125.2 (*ortho*-C-Ar(Br)), 69.9 (Ar(CH)CH₃), 25.0 (Ar(CH)CH₃). ESI-MS: m/z $[M+1]^+$ calcd for C₁₅H₁₄BrN: 288.1880; found: found: 288.0379 (⁷⁸Br) and 290.0358 (^{80}Br) .

N-[[2-bromophenyl]methylene]-benzenamine 10. The reactants aniline (0.18 ml, 2 mmol) and 2-bromobenzaldehyde (0.23 ml, 2 mmol) were reacted according to the general procedure. A yellow oil was obtained: 0.51 g, 98 % yield. ¹H NMR (400 MHz, CDCl₃): δ 8.87 (1H, s, N=C(H)), 8.25 (1H, d, ³J_{HH}: 7.6 Hz, *ortho*-Ar), 7.63 (1H, d, ³J_{HH}:

8.0 Hz, meta-Ar), 7.43 (3H, m, meta-Ar), 7.30 (1H, m, ortho-Ar, para-Ar). ¹³C NMR (100 MHz, CDCl₃): δ 159.4 (N=C), 151.8 (N-ArC), 134.7 (Ar(C)C=N), 133.3 (meta-C-Ar), 132.5 (para-C-Ar), 129.3 (meta-C-Ar), 129.2 (meta-C-Ar), 127.8 (para-C-Ar), 126.2 (ortho-C-Ar), 126.2 (ortho-C-Ar). ESI-MS: m/z [M+1]⁺ calcd for C13H10BrN: 260.1340; found: 260.0068 (⁷⁸Br) and 262.0050 (⁸⁰Br).

N-[[2-bromophenyl]methylene]-2-propen-1-amine 11. The reactants allylamine (0.15 ml, 2 mmol) and 2-bromobenzaldehyde (0.23 ml, 2 mmol) were reacted according to the general procedure. A yellow oil was obtained: 0.44 g, 99 % yield. ¹H NMR (400 MHz, CDCl₃): δ 8.57 (1H, s, N=C(H)), 7.97 (1H, dd, ³J_{HH}: 9.6 Hz, *ortho*-Ar), 7.47 (1H, d, ³J_{HH}: 8.0 Hz, *meta*-Ar), 7.20 (2H, m, *meta*-Ar and *para*-Ar), 7.18 (1H, t, -C(H)=CH₂), 5.99 (1H, m, -C(H)=CH₂) 5.13 (2H, m, -C(H)=CH₂), 4.22 (2H, s, N(CH₂)). ¹³C NMR (100 MHz, CDCl₃): 161.0 ((N=C), 135.7 (*meta*-ArC), 134.6 (Ar(C)C=N), 133.1 (*para*-ArC), 131.9 ((-C(H)=CH₂), 128.9 (*meta*-ArC), 127.7 (*ortho*-ArC), 125.1 (*ortho*-C-Ar(Br)), 116.4 ((-C(H)=CH₂), 63.6 (N(CH₂)). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₀H₁₀BrN: 224.1010; found: 224.0067 (⁷⁸Br) and 226.0048 (⁸⁰Br).

N-[[2-bromopheny]methylene]-ethanol 12. The reactants ethanolamine (0.12 ml, 2 mmol) and 2-bromobenzaldehyde (0.23 ml, 2 mmol) were reacted according to the general procedure. A light yellow oil was obtained: 0.44 g, 96 % yield. ¹H NMR (300 MHz, CDCl₃): 8.68 (1H, s, N=C(H)), 7.97 (1H, d, ${}^{3}J_{HH}$: 9.6 Hz, *ortho*-H), 7.54 (1H, d, ${}^{3}J_{HH}$: 9.3 Hz, *meta*-H), 7.27 (2H, m, *meta*-H and *para*-H), 3.90 (2H, m, *-CH*₂OH), 3.78 (2H, m, NCH₂-), 2.61 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃): 162.2 (N=C), 134.3 (*ipso*-C), 133.1 (*meta*-C), 132.0 (*para*-C), 128.8 (*meta*-C), 127.7 (*ortho*-C), 125.2 (*ipso*-C), 63.4 (*-CH*₂OH), 62.4 (NCH₂-). ESI-MS: *m*/z [M+1]⁺ calcd for C₉H₁₁BrNO: 229.0790; found: 228.0890 (⁷⁸Br), 230.0874 (⁸⁰Br).

α-methyl-N-(4-nitrophenyl)-benzenemethanamine 13. The reactants αmethylbenzylamine (0.26 ml, 2 mmol) and 4-nitrobenzaldehyde (0.30 g, 2 mmol) were reacted for 30 mins, according to the general procedure. A bright yellow oil was obtained: 0.49 g, 97 % yield. ¹H NMR (400 MHz, CDCl₃): 8.35 (1H, s, N=C(*H*)), 7.16 (2H, d, ${}^{3}J_{\text{HH}}$: 9.2 Hz, *meta*-ArH), 7.86 (2H, d, ${}^{3}J_{\text{HH}}$: 8.8 Hz, *ortho*-ArH), 7.34 (2H, d, ${}^{3}J_{\text{HH}}$: 8.0 Hz, *ortho*-ArH), 7.27 (2H, t, ${}^{3}J_{\text{HH}}$: 14.8 Hz, *meta*-ArH), 7.18 (1H, t, ${}^{3}J_{\text{HH}}$: 15.6 Hz, *para*-ArH), 4.52 (1H, q, ${}^{3}J_{\text{HH}}$: 20.0 Hz, PhC(*H*)CH₃-), 1.53 (3H, d, ${}^{3}J_{\text{HH}}$: 6.4 Hz, PhC(H)CH₃). ¹³C NMR (100 MHz, CDCl₃): 157.2 (N=C), 144.5 (*para*-C-Ar(NO₂)), 141.9 (Ar(*C*)-CH(CH₃)), 129.1 (*ortho*-ArC), 129.0 (Ar(*C*)C=N),128.7 (*meta*-ArC), 127.3 (*ortho*-ArC), 126.7 (*para*-ArC), 123.9 (*meta*-ArC), 70.2 (Ar(*C*H)CH₃), 24.9 (Ar(CH)CH₃). ESI-MS: *m*/*z* [M+1]⁺ calcd for C₉H₁₀BrNO: 254.2890; found: 255.1130.

N-[[4-nitrophenyl]methylene]-2-propen-1-amine 15. The reactants allylamine (0.15 ml, 2 mmol) and 4-nitrobenzaldehyde (0.30 g, 2 mmol) were reacted for 30 mins, according to the general procedure. A dark red crystalline solid was obtained: 0.37 g, 97 % yield. ¹H NMR (400 MHz, CDCl₃): 8.38 (1H, s, N=C(H)), 8.26 (2H, d, ${}^{3}J_{HH}$: 8.8 Hz, *meta*-H), 7.92 (2H, d, ${}^{3}J_{HH}$: 8.8 Hz, *ortho*-H), 6.07 (1H, m, -C(H)=CH₂), 5.22 (2H, m, -C(H)=CH₂), 4.33 (2H, m, N-CH₂-). ¹³C NMR (100 MHz, CDCl₃): 159.9 (N=C), 149.4 (*ipso*-C), 141.9 (*ipso*-C), 135.4 (*ortho*-C), 129.2 (-C(H)=CH₂), 124.2 (*meta*-C), 117.1 (-

C(H)=*C*H₂), 63.9 (N-*C*H₂-). **ESI-MS:** m/z [M+1]⁺ calcd for C₁₁H₁₃NO: 191.2100; found: 191.0817.

N-[[4-nitrophenyl]methylene]-ethanol 16. The reactants ethanolamine (0.12 ml, 2 mmol) and 4-nitrobenzaldehyde (0.30 g, 2 mmol) were reacted for 30 mins, according to the general procedure. An off white powder was obtained: 0.38 g, 98 % yield. ¹H NMR (400 MHz, CDCl₃): 8.43 (1H, s, N=C(*H*)), 8.27 (2H, d, ${}^{3}J_{HH}$: 9.0 Hz, *meta*-H), 7.91 (2H, d, ${}^{3}J_{HH}$: 9.0 Hz, *ortho*-H), 3.95 (2H, m, N-CH₂-), 3.83 (2H, m, -CH₂-OH), 1.88 (1H, s, OH). ¹³C NMR (100 MHz, CDCl₃): 160.9 (N=C), 141.4 (*ipso*-C), 129.0 (*ortho*-C), 127.4 (*ipso*-C), 124.0 (*meta*-C), 63.5 (N-CH₂-), 62.3 (-CH₂OH). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₁H₁₃NO: 195.1980; found: 195.0764.

α-methyl-N-[[2-(trifluoromethyl)phenyl]methylene]-benzenemethanamine 25. The reactants α-methylbenzylamine (0.26 ml, 2 mmol) and 2-trifluoromethylbenzaldehyde (0.27 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. An opaque oil was obtained: 0.55 g, 99 % yield. ¹H NMR (400 MHz, CDCl₃): 8.75 (1H, s, N=C(*H*)), 8.30 (1H, d, ${}^{3}J_{HH}$: 7.8 Hz, *ortho*-H), 7.68 (1H, d, ${}^{3}J_{HH}$: 7.8 Hz, *meta*-H), 7.60 (1H, t, 15.0 Hz, *meta*-H), 7.44 (3H, m, Ar-H), 7.37 (2H, t, ${}^{3}J_{HH}$: 15.3 Hz, *meta*-H), 7.26 (2H, m, Ar-H), 4.65 (1H, q, ${}^{3}J_{HH}$: 20.0 Hz, N-CH(CH₃)-), 1.61 (3H, d, ${}^{3}J_{HH}$: 6.9 Hz). ¹³C NMR (100 MHz, CDCl₃): 155.9 (N=C), 144.8 (*ipso*-C), 132.1 (*meta*-C), 130.1 (*ortho*-C), 128.9 (*ipso*-C), 128.7 (*meta*-C), 128.6 (*ortho*-C), 127.1 (*meta*-C), 126.7 (*para*-C), 126.5 (*ipso*-C), 125.6 (*C*F₃), 70.2 (Ph*C*(CH₃)-), 24.9 (CH₃). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₀H₁₀F₃NO: 278.2982; found: 278.1140.

N-[[2-(trifluoromethyl)phenyl]methylene]-benzenamine 26. The reactants aniline (0.18 ml, 2 mmol) and 4-trifluoromethylbenzaldehyde (0.27 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. A yellow oil was obtained: 0.49 g, 98 % yield. ¹H NMR (400 MHz, CDCl₃): 8.84 (1H, s, (N=C(*H*)), 8.45 (1H, d, ${}^{3}J_{HH}$: 7.8 Hz, *ortho*-H), 7.74 (1H, d, ${}^{3}J_{HH}$: 7.8 Hz, *meta*-H), 7.66 (1H, t, ${}^{3}J_{HH}$: 15.3 Hz, *meta*-H), 7.56 (1H, t, ${}^{3}J_{HH}$: 15.0 Hz, *para*-H), 7.43 (2H, t, ${}^{3}J_{HH}$: 15.6 Hz, *meta*-H), 7.25 (3H, m, *ortho*-H and *para*-H). ¹³C NMR (100 MHz, CDCl₃): 156.6 (N=C), 151.7 (*ipso*-C), 134.3 (*meta*-C), 132.2 (*ortho*-C), 130.8 (*para*-C), 129.4 (*meta*-C), 128.6 (*para*-C), 126.8 (*meta*-C), 126.0 (*ipso*-C), 125.8 (*C*F₃), 122.5 (*ipso*-C), 121.1 (*ortho*-C). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₀H₁₀F₃NO: 250.2442; found: 250.0837.

N-[[2-(trifluoromethyl)phenyl]methylene]-2-propen-1-amine 27. The reactants allylamine (0.15 ml, 2 mmol) and 4-trifluoromethylbenzaldehyde (0.27 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. A yellow oil was obtained: 0.42 g, 99 % yield. ¹H NMR (400 MHz, CDCl₃): 8.66 (1H, s, N=C(*H*)), 8.24 (1H, d, ${}^{3}J_{HH}$: 8.0 Hz, *ortho*H), 7.68 (1H, d, ${}^{3}J_{HH}$: 7.6 Hz, *meta*-H), 7.59 (1H, t, ${}^{3}J_{HH}$: 15.2 Hz, *meta*-H), 7.51 (1H, t, ${}^{3}J_{HH}$: 15.2 Hz, *para*-H), 6.07 (1H, m, -CH₂CH=CH₂), 5.22 (1H, m, -CH₂CH=CH₂), 4.32 (2H, d, ${}^{3}J_{HH}$: 7.2 Hz, N-CH₂-). ¹³C NMR (100 MHz, CDCl₃): 158.5 (N=*C*), 135.5 (*meta*-C), 134.4 (*ipso*-C), 132.1 (*ortho*-C), 130.2 (*para*-C), 128.4 (-CH₂=CH₂), 126.1 (*ipso*-C), 125.6 (CF₃), 122.5 (*meta*-C), 116.6 (-CH₂=CH₂), 63.8 (N-CH₂-). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₀H₁₀F₃NO: 214.2112; found: 214.0834.

N-[[2-(trifluoromethyl)phenyl]methylene]-ethanol 28. The reactants ethanolamine (0.12 ml, 2 mmol) and 4-trifluoromethylbenzaldehyde (0.27 ml g, 2 mmol) were reacted for 30 mins, according to the general procedure. A light yellow oil was obtained: 0.42 g, 97 % yield. ¹H NMR (400 MHz, CDCl₃): 8.70 (1H, s, N=C(*H*)), 8.17 (1H, d, ${}^{3}J_{HH}$: 7.2 Hz, *ortho*-H), 7.67 (1H, d, ${}^{3}J_{HH}$: 7.5 Hz, *meta*-H), 7.55 (2H, m, *meta*-H and *para*-H), 3.91 (2H, m, N-CH₂-), 3.79 (2H, m, -CH₂OH), 2.61 (1H, br s, OH). ¹³C NMR (100 MHz, CDCl₃): 159.5 (N=C), 134.3 (*ipso*-C), 132.1 (*meta*-C), 130.4 (*ortho*-C), 128.3 (*meta*-C), 126.0 (*ipso*-C), 125.6 (*C*F₃), 122.4 (*para*-C), 63.5 (N-CH₂-), 62.4 (-CH₂OH). ESI-MS: m/z [M+1]⁺ calcd for C₁₀H₁₀F₃NO: 218.1992; found: 218.0787.

α-methyl-N-(2-thienylmethylene)-benzenemethanamine 29. The reactants αmethylbenzylamine (0.26 ml, 2 mmol) and 2-thiophenecarboxaldehyde (0.19 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. A yellow oil was obtained: 0.42 g, 98 % yield. ¹H NMR (400 MHz, CDCl₃): 8.44 (1H, s, N=C(*H*)), 7.43 (7H, m, ArH), 7.06 (1H, t, ${}^{3}J_{\text{HH}}$: 8.7 Hz, *para*-H), 4.54 (1H, q, ${}^{3}J_{\text{HH}}$: 19.2 Hz, PhC(*H*)CH₃-), 1.60 (3H, d, ${}^{3}J_{\text{HH}}$: 8.2 Hz, PhC(H)CH₃-). ¹³C NMR (100 MHz, CDCl₃): 152.9 (N=C), 145.1 (*ipso*-C 142.9 (*ipso*-C), 130.5 (*ortho*-C), 128.9 (Ar-C), 128.6 (*meta*-C), 127.4 (*ortho*-C), 126.9 (Ar-C), 126.8 (*para*-C), 69.3 (PhCH(CH₃)-), 24.8 (PhCH(CH₃)-). ESI-MS: *m*/*z* [M+1]⁺ calcd for C₁₃H₁₃NS: 216.3220; found: 216.0832.

N-(2-thienylmethylene)-benzenamine 30. The reactants aniline (0.18 ml, 2 mmol) and 2-thiophenecarboxaldehyde (0.19 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. An orange oil was obtained: 0.36 g, 96 % yield. ¹H NMR (400 MHz, CDCl₃): 8.59 (1H, s, N=C(*H*)), 7.53 (2H, d, ${}^{3}J_{HH}$: 5.7 Hz, *ortho*-H), 7.40 (2H, t, ${}^{3}J_{HH}$: 15.3 Hz, *meta*-H), 7.26 (3H, m, Ar-H), 7.15 (1H, t, ${}^{3}J_{HH}$: 9.6 Hz, *para*-H).¹³C NMR (100 MHz, CDCl₃): 153.1 (N=C), 151.5 (*ipso*-C), 142.9 (*ipso*-C), 132.4 (Ar-C), 130.5 (Ar-C), 129.3 (*meta*-C), 127.9 (Ar-C), 126.2 (*para*-C), 121.1 (*ortho*-C). ESI-MS: *m*/z [M+1]⁺ calcd for C₁₁H₉NS: 188.2680; found: 188.0526.

N-(2-thienylmethylene)-2-propen-1-amine 31. The reactants allylamine (0.15 ml, 2 mmol) and 2-thiophenecarboxaldehyde (0.19 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. An orange oil was obtained: 0.29 g, 96 % yield. ¹H NMR (400 MHz, CDCl₃): 8.38 (1H, s, N=C(H)), 7.40 (1H, d, ³J_{HH}: 4.8 Hz, Ar-H), 7.31 (1H, d, ³J_{HH}: 3.6 Hz, Ar-H), 7.06 (1H, t, ³J_{HH}: 8.8 Hz, Ar-H), 6.03 (1H, m, -CH₂CH=CH₂), 5.20 (2H, m, CH₂CH=CH₂), 4.21 (2H, m, CH₂CH=CH₂). ¹³C NMR (100 MHz, CDCl₃): 155.2 (N=C), 142.6 (*ipso*-C), 135.8 (-CH₂CH=CH₂), 130.6 (Ar-C), 129.0 (Ar-C), 127.4 (Ar-C), 116.4 (-CH₂CH=CH₂), 63.1 (-CH₂CH=CH₂). ESI-MS: *m*/*z* [M+1]⁺ calcd for C₈H₉NS: 152.2350; found: 152.0525.

2-[(2-thienylmethylene)amino]-ethanol 32. The reactants ethanolamine (0.12 ml, 2 mmol) and 2-thiophenecarboxaldehyde (0.19 ml, 2 mmol) were reacted for 30 mins, according to the general procedure. A a yellow oil was obtained: 0.30 g, 97 % yield. ¹H **NMR (400 MHz, CDCl_3):** 8.38 (1H, s, N=C(*H*)), 7.38 (1H, d, ${}^{3}J_{\text{HH}}$: 6.9 Hz, Ar-H), 7.28 (1H, d, ${}^{3}J_{\text{HH}}$: 5.6 Hz, Ar-H), 7.04 (1H, t, ${}^{3}J_{\text{HH}}$: 12.4 Hz, Ar-H), 3.87 (2H, t, ${}^{3}J_{\text{HH}}$: 10.2 Hz, -C*H*₂OH), 3.69 (2H, t, ${}^{3}J_{\text{HH}}$: 10.2 Hz, N-C*H*₂-), 2.92 (1H, br s, OH). ¹³C **NMR (100 MHz, CDCl_3):** 156.4 (N=C), 142 (*ipso*-C), 130.9 (Ar-C), 129.2 (Ar-C), 127.5 (Ar-C),

63.1 (N-CH₂-), 62.2 (-CH₂OH). **ESI-MS:** m/z [M+1]⁺ calcd for C₇H₉NOS: 156.2230; found: 156.0474.

Amine	Ketone	Imine	Conversion (prod: sm) ^a
PhC(CH ₃)NH ₂	O=C ₆ H ₁₀	N	78: 22
PhNH ₂	O=C ₆ H ₁₀	N N	0: 100
CH ₂ =CHNH ₂	O=C ₆ H ₁₀	N.	0: 100
HO(CH ₂) ₂ NH ₂	O=C ₆ H ₁₀	HO	0: 100
PhC(CH ₃)NH ₂	O=C(CH(CH ₃) ₂) ₂	N	0: 100
PhNH ₂	O=C(CH(CH ₃) ₂) ₂	N N	0: 100
CH ₂ =CHNH ₂	O=C(CH(CH ₃) ₂) ₂	N N	0: 100
HO(CH ₂) ₂ NH ₂	O=C(CH(CH ₃) ₂) ₂	HO	0: 100
PhC(CH ₃)NH ₂	O=C(Ph) ₂		0: 100
PhNH ₂	O=C(Ph) ₂		0: 100
CH ₂₌ CHNH ₂	O=C(Ph) ₂	N N	0: 100
HO(CH ₂) ₂ NH ₂	O=C(Ph) ₂	HO	0: 100

Attempted synthesis of imines from ketones

(S)-N-(4-methoxybenzylidene)--methylbenzylamine 1a

(S)-N-(2-methoxybenzylidene)--methylbenzylamine 1b

(S)-N-(2-methoxybenzylidene)--methylbenzylamine 1c

N-[[4-methoxyphenyl]methylene]-benzenamine (2)

N-[[4-methoxyphenyl]methylene]-2-propen-1-amine (3)

N-[[4-methoxyphenyl]methylene]-ethanol (4)

1H NMR:

N-[(2-hydroxyphenyl)methylene]-benzenamine (6)

N-[(2-hydroxyphenyl)methylene]-2-propen-1-amine (7)

N-[(2-hydroxyphenyl)methylene]-ethanol (8)

1H NMR:

α-methyl-N-(2-bromophenyl)-benzenemethanamine (9)

N-[[2-bromophenyl]methylene]-benzenamine (10)

N-[[2-bromophenyl]methylene]-2-propen-1-amine (11)

N-[[2-bromopheny]methylene]-ethanol 12.

N-[[4-nitrophenyl]methylene]-2-propen-1-amine (15)

N-[[4-nitrophenyl]methylene]-ethanol (16)

1H NMR:

N-[[2-(trifluoromethyl)phenyl]methylene]-benzenamine (26)

N-[[2-(trifluoromethyl)phenyl]methylene]-ethanol (28)

1H NMR:

α-methyl-N-(2-thienylmethylene)-benzenemethanamine 29

N-(2-thienylmethylene)-benzenamine 30

1H NMR:

586	538	535	522	519	433	425	406	382	271	267	256	252	229	170	165	154	142	138
•		•	•		•			•		•	•		•	•	•	•	•	
00								\sim						5				
												_						

10 ppm

N-(2-thienylmethylene)-2-propen-1-amine 31

2-[(2-thienylmethylene)amino]-ethanol 32

