Supplementary Material

Facile synthesis of hierarchical CuO microspheres and their gas sensing properties for NO_x at room temperature

Wanzhen Song^a, Hongyuan Wu,^a Jingchao Wang^a, Yufei Lin^a, Jiabao Song^a, Yu Xie^c,

Li Li^{a,b*} and Keying Shi^{a*}

a. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.

b. Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.

c. Department of Materials Chemistry, Nanchang Hangkong University, Nanchang, 330063, P. R. China.

*Corresponding author. Tel.: +86 451 86609141; +86 451 86604920

E-mail address: shikeying2008@163.com (K. Y. Shi); llwjjhlju@sina.cn.

Fig. S1 UV-vis diffuse reflectance spectra of (a) CuO-1 (b) CuO-2 and (c) CuO-3 samples. The inset shows plots of (αhv)² versus incident photon energy (hv) for (a) CuO-1 (b) CuO-2 and (c) CuO-3 samples, respectively.

 $\label{eq:stables} \textbf{Table S1} \ \textbf{Fitted} \ \textbf{impedance} \ \textbf{parameters} \ \textbf{of} \ \textbf{the} \ \textbf{samples}$

Samples	$R_{\Omega}(\Omega)$	$C(F \text{ cm}^{-2})$	$R_{ct}(\Omega)$
CuO-1	311.6	2.22×10 ⁻⁶	4575
CuO-2	174.4	3.98×10 ⁻⁶	2576
CuO-3	281.3	2.00×10 ⁻⁶	3307

Table S2 Gas response results of CuO-2 sensor to NO_x at RT in air

NO _x Concentration (ppm)	97	48.5	29.1	9.7	4.85	2.91	0.97
Response (%)	64.93	63.48	55.04	27.92	11.20	7.44	1.14
Response time (s)	5.33	6.67	7.33	9.33	14.67	17.33	18.67

Fig. S2 Typical response curves of the CuO sensor to $97 \sim 0.97$ ppm NO_x at **RT**. (a)

CuO-1; (b) CuO-3

Fig. S3 Nitrogen adsorption-desorption isotherms of (a) CuO-1 (b) CuO-2 (c)

CuO-3 and the insert shows the pore-size distribution curve of CuO-1, CuO-2

and CuO-3 samples.

sample	CuO-1	CuO-2	CuO-3
BET surface area (m ² ·g ⁻¹)	19.2	31.9	22.8
Dominant mesopore size (nm)	12.3	8.7	10.2

Table S3 BET surface area of samples