Supplementary Material for:

Enhanced Squaraine Rotaxane Endoperoxide Chemiluminescence in Acidic Alcohols

Evan M. Peck, Allen G. Oliver, and Bradley D. Smith*

Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA

*Email: smith.115@nd.edu

Contents

A. Structural Elucidation of Squaraine Rotaxane Diol 6	S2
B. Variable Temperature ¹ H NMR	S4
C. ¹ H and ¹³ C NMR Spectra	S6

A. Structural Elucidation of Squaraine Rotaxane Diol 6:

A drop of D_2O was added to an NMR tube containing **6** (1.0 mM) and the mixture was shaken vigorously. After allowing the mixture to stand for 15 minutes, the samples was cooled to -40°C and a spectrum was taken. At this time, the solvent was removed under reduced pressure. The dry film was dissolved in CDCl₃ and the process was repeated using H₂O.

Figure S1: Deuterium exchange studies on **6** (600MHz, CDCl₃, -40°C). (a) Before addition of D_2O ; (b) After addition of D_2O ; (c) After removal of solvent and addition of H_2O .

Figure S2: IR-spectrum of **2** and **6**, indicating the presence of an OH group. Amide N-H stretches are present in the parent squaraine rotaxane **2** at 3300 cm⁻¹, however the OH stretch in the diol-containing **6** appears at 3280 cm⁻¹ and its signature is quite different from that of **2**. It is interesting to note that in both compounds the alkyne C-C and C-H stretches, although present, are much weaker than expected.

B. Variable Temperature NMR Studies:

Figure S3: Variable temperature NMR of 6 (CDCl₃, 600MHz)

The exchange rate at the coalescence temperature was determined using:

$$k = \frac{\pi}{\sqrt{2}} \Delta \mathsf{v}_0$$

Where Δv_0 is the limiting chemical shift difference of two exchanging protons (in Hz). To determine the free energy of activation (in kcal·mol⁻¹), the Eyring equation was simplified into the following form:

$$\Delta G^{\dagger} = 4.57 T_C \left[9.97 + \log_{10} \left(\frac{T_C}{\Delta \mathsf{v}_0} \right) \right]$$

Where T_C is the coalescence temperature (in K).

Table S1: Summary of DNMR data from Figure S3.

Proton	$\Delta v_0 (Hz)^a$	$T_{\rm C}({\rm K})^{ m b}$	∆G [‡] (kcal⋅mol⁻¹) ^c
E _{он}	267	283	14.4
F	55	268	13.1
1	38	278	13.7

^aFrequency difference of limiting chemical shifts at 233 K.

^bCoalescence temperature, error ± 5 K.

°Calculated free energy of activation

C.¹H and ¹³C NMR Spectra:

¹H NMR (500 MHz, CDCl₃, 23°C) spectrum of squaraine rotaxane, **2**.

 ^{13}C NMR (150 MHz, CDCl₃, 23°C) spectrum of squaraine rotaxane **2**.

¹H NMR (600 MHz, CD_2Cl_2 , 0°C) spectrum of SREP, **2EP**.

 ^{13}C NMR (150 MHz, CD₂Cl₂, 0°C) spectrum of SREP **2EP**.

¹H NMR (600 MHz, CDCl₃, -40°C) spectrum of squaraine rotaxane, **6**.

COSY-NMR of squaraine rotaxane diol 6.