SUPPLEMENTARY MATERIAL

3D-Printable Biodegradable Polyester Tissue Scaffolds for Cell Adhesion

Justin M. SirrineA, Allison M. PekkanenB, Ashley M. NelsonA, Nicholas A. ChartrainC, Christopher B. WilliamsD, and Timothy E. LongA, B, E

ADepartment of Chemistry, Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA.
BSchool of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
CDepartment of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
DDepartment of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
ECorresponding author. Email: telong@vt.edu
Supplementary Figure 1. 1H NMR structure confirmation for (a) poly(tri(ethylene glycol) adipate)) (PTEGA) dimethacrylate and (b) PTEGA diol, overlayed with (c) decarboxylated functionalization reactant 2-aminoethyl methacrylate.
Supplementary Figure 2. 13C NMR structure confirmation for (a) poly(triethylene glycol adipate)) (PTEGA) dimethacrylate and (b) PTEGA diol, overlayed with (c) decarboxylated functionalization reactant 2-aminoethyl methacrylate.
Supplementary Figure 3. 1H NMR spectra and peak integrations used for molecular weight determination (M_n) of (a) poly(tri(ethylene glycol) adipate)) (PTEGA) diol and (b) PTEGA dimethacrylate. (c) Differential Scanning Calorimetry (DSC) trace showing the PTEGA dimethacrylate glass transition temperature.

1H NMR endgroup analysis provided the number average molecular weight (M_n) of the poly(tri(ethylene glycol) adipate)) (PTEGA) diol precursor. These calculations are as follows:

$$\frac{\int H + \int I + \int J}{\int G} = \frac{12n + 12}{4n} = \frac{4.32 + 10.41}{4.00} \Rightarrow n = 4.40$$

Repeat unit = 260.3 g/mol
Endgroups = 150.2 g/mol
PTEGA diol M_n = 1,296 g/mol
Based on the above PTEGA diol integrations for F and degree of polymerization n, the PTEGA dimethacrylate F peak was set to \(F = 4.16 \times 4.40 = 18.30. \) Then, % methacrylate termination was based on the actual A integration value over the theoretical 6.00 integration value. Accounting for the methacrylate endgroups afforded the PTEGA dimethacrylate \(M_n. \)

\[
\% \text{ methacrylate termination} = \frac{5.90}{6.00} = 98 \%
\]

\(M_n \) of the PTEGA dimethacrylate can be estimated by adding the theoretical molecular weight of the 2-isocyanatoethyl methacrylate to the PTEGA diol molecular weight and accounting for the % methacrylate termination, as was calculated above.

\[
PTEGA \text{ dimethacrylate } M_n = 1,296 + (155.15 \times 2) \times 0.98
\]

\[
PTEGA \text{ dimethacrylate } M_n = 1,600 \text{ g/mol}
\]
Supporting Figure 4. Tukey’s Honest Significant Difference (HSD) test for statistical significance. As shown, the three populations are not connected by the same letter and are therefore significantly different at $p < 0.050$.

<table>
<thead>
<tr>
<th>Level</th>
<th>Sq Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>tissue culture treated polystyrene</td>
<td>A 5680029.8</td>
</tr>
<tr>
<td>polyester photocured film</td>
<td>B 1400450.1</td>
</tr>
<tr>
<td>non-tissue culture treated polystyrene</td>
<td>C 925786.0</td>
</tr>
</tbody>
</table>

Levels not connected by same letter are significantly different.