Supplementary Material

for

Formation and Direct Detection of non-Conjugated Triplet 1,2-Biradical from β,γ-Vinylarylketone

H. Dushanee M. Sriyarathne,^A Kosala R. S. Thenna-Hewa,^A Tianeka Scott and Anna D. Gudmundsdottir^{A, B}

^ADepartment of Chemistry, University of Cincinnati, Cincinnati OH 45221, USA

^BCorresponding author: anna.gudmundsdottir@uc.edu

Table of Contents

1. Ca	lculations	2
1.1	Optimized Geometries, Energies and TD-DFT calculations of 1	2
1.2. 0	Dptimized geometries, Energies and TD-DFT calculations of T_{K} of 1	5
1.3 0	ptimized geometries, Energies and TD-DFT calculations of 2	11
1.4 0	Pptimized geometries, Energies of β substituted peroxy radical	15
1.4. 0	Optimized geometries, Energies of γ substituted peroxy radical	16
2. Las	ser flash photolysis of acetophenone	17
3. NN	<pre>//R and IR spectra of 1</pre>	
3.1	¹ H NMR spectrum of 2-methyl-1-phenyl-but-3-en-1-one (1)	
3.2.	¹³ C NMR spectrum of 2-methyl-1-phenyl-but-3-en-1-one (1)	

	3.3.	FTIR of spectrum 2-methyl-1-phenyl-but-3-en-1-one (1)	19
4	. Synthe	sis of 1-d	20
	4.1 Syn	thesis of racemic (Z)-1-Buten-3-ol-1D	20
	4.2 Syn	thesis of racemic (Z)-3-chloro-1-butene-1D	20
	4.3 Syn 4D (1-c	thesis of 2-methyl-1-phenylbut-3-en-1-ol-4D and Oxidation to 2-methyl-1-phenylbut-3-en-1-o ا)	วไ- 20
	4.4 Ref	erences	20
5	. ¹ H-NM	R spectra before and after irradiation of 1-d	21

1. Calculations

1.1 Optimized Geometries, Energies and TD-DFT calculations of 1

DFT/B3LYP/6-31+G(d) E: -501.61865608 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-2.371463	-1.451791	0.494964
2	6	0	-1.050092	-1.001662	0.450202
3	6	0	-0.754935	0.301386	0.015778
4	6	0	-1.813364	1.143375	-0.371672
5	б	0	-3.131533	0.697097	-0.319351
б	б	0	-3.414216	-0.603581	0.114286
7	1	0	-2.585003	-2.464575	0.826553
8	1	0	-0.255115	-1.679496	0.740784
9	1	0	-1.576502	2.146956	-0.710551
10	1	0	-3.940075	1.359929	-0.616691

11	1	0	-4.442643	-0.953806	0.153799
12	б	0	0.640678	0.849118	-0.066680
13	8	0	0.841924	1.947891	-0.568030
14	б	0	1.835562	0.024209	0.451221
15	1	0	1.495484	-0.691227	1.207186
16	б	0	2.423665	-0.745692	-0.713777
17	1	0	2.741867	-0.131971	-1.557719
18	б	0	2.588651	-2.070927	-0.758191
19	1	0	2.286386	-2.717636	0.064215
20	1	0	3.039348	-2.558578	-1.618841
21	б	0	2.888695	0.952113	1.088208
22	1	0	3.729626	0.357677	1.460738
23	1	0	3.262933	1.675359	0.358392
24	1	0	2.458416	1.512369	1.926432

TD-DFT calculations of 1

_

Gas Phase (S1K, S2K,)

TD-DFT/RB3LYP/6-31+G(d) E: -501.48694514 a.u.

Excited State <s**2>=0.000 40 -> 44 43 -> 44</s**2>	1:	Singlet-A -0.16926 0.66885	3.5840 eV	345.93 nm	f=0.0036
Excited State	2:	Singlet-A	4.6229 eV	268.20 nm	f=0.0124
<s**2>=0.000 41 -> 44 41 -> 45 42 -> 44 42 -> 45</s**2>		0.54903 -0.12221 -0.36374 -0.19543			
Excited State <s**2>=0.000 40 -> 44 41 -> 44 42 -> 44 43 -> 44</s**2>	3:	Singlet-A 0.49014 -0.22019 -0.41025 0.17434	4.7982 eV	258.40 nm	f=0.0917
Excited State <s**2>=0.000 40 -> 44 41 -> 44 42 -> 44 42 -> 45</s**2>	4:	Singlet-A 0.45586 0.28862 0.40708 -0.13221	5.0816 eV	243.99 nm	f=0.1868

Excited S	tate 5	5:	Singlet-A	5.4067	eV	229.32	nm	f=0.0081
<s**2>=0.0</s**2>	00							
43 -	> 45	0.	69683					

Gas Phase (T_{1K}, T_{2K},)

TD-DFT/RB3LYP/6-31+G(d) E: -501.50461258 a.u.

Excited State <\$**2>=2.000	1:	Triplet-A	3.1033 eV	399.53 nm	f=0.0000
40 -> 44		-0.15638			
41 -> 44		0.12072			
43 -> 44		0.65181			
Excited State	2:	Triplet-A	3.3000 eV	375.71 nm	f=0.0000
<s**2>=2.000</s**2>		-			
40 -> 44		0.12947			
41 -> 44		0.27886			
41 -> 45		0.21416			
42 -> 44		0.55069			
42 -> 45		-0.14204			
Excited State	3:	Triplet-A	3.9077 eV	317.28 nm	f=0.0000
<s**2>=2.000</s**2>					
40 -> 44		-0.21649			
40 -> 46		-0.27260			
40 -> 47		0.10186			
41 -> 44		0.47413			
42 -> 44		-0.21328			
43 -> 46		-0.22558			
Excited State	4:	Triplet-A	3.9561 eV	313.40 nm	f=0.0000
<s**2>=2.000</s**2>					
40 -> 44		0.32060			
40 -> 46		0.26071			
41 -> 44		0.35756			
41 -> 46		-0.11853			
42 -> 44		-0.27226			
43 -> 46		0.24874			
Excited State	5:	Triplet-A	4.3889 eV	282.49 nm	f=0.0000
<s**2>=2.000</s**2>					
41 -> 44		-0.14545			
41 -> 45		0.48739			
42 -> 44		-0.21209			
42 -> 45		-0.39826			

1.2. Optimized geometries, Energies and TD-DFT calculations of T_K of 1

DFT/UB3LYP/6-31+G(d) E: -501.51079249 a.u.

Center	Atomic	Atomic	c Coordinates (Angstroms)						
Number	Number	Туре	Х	Y	Z				
1	б	0	2.397816	1.399888	0.555401				
2	б	0	1.071863	0.986120	0.516691				
3	б	0	0.730055	-0.308764	0.031849				
4	6	0	1.792913	-1.147222	-0.425075				
5	6	0	3.109954	-0.712699	-0.380403				
б	6	0	3.431315	0.561791	0.110888				
7	1	0	2.630180	2.392750	0.933513				
8	1	0	0.299011	1.668658	0.853917				
9	1	0	1.559045	-2.140205	-0.798827				
10	1	0	3.899318	-1.373778	-0.730798				
11	1	0	4.464226	0.896376	0.144035				
12	б	0	-0.612872	-0.790427	-0.011693				
13	8	0	-0.910041	-1.942583	-0.556104				
14	б	0	-1.873316	-0.001186	0.444722				
15	1	0	-1.509480	0.717986	1.186635				
16	6	0	-2.436012	0.744528	-0.736666				
17	1	0	-2.824655	0.124974	-1.545405				
18	6	0	-2.480928	2.079332	-0.839095				
19	1	0	-2.094414	2.729491	-0.056276				
20	1	0	-2.911022	2.568536	-1.709136				
21	6	0	-2.914011	-0.916006	1.117594				
22	1	0	-3.730549	-0.304664	1.516902				
23	1	0	-3.338855	-1.632580	0.407120				
24	1	0	-2.463141	-1.479020	1.941868				

TD-DFT calculations of T_K of 1

Gas Phase

TD-DFT/UB3LYP/6-31+G(d) E: -501.49133531 a.u.

Excited State	1:	3.016-A	0.5295 eV 2	2341.72 nm	f=0.0003
32B -> 43B 34B -> 43B 38B -> 43B 40B -> 43B 41B -> 43B 42B -> 43B		0.10217 0.10156 0.29552 0.15443 0.85480 -0.36823			
Excited State <s**2>=2.034 41B -> 43B 42B -> 43B</s**2>	2:	3.022-A 0.38521 0.92212	1.0248 eV	1209.82 nm	f=0.0001
Excited State <s**2>=2.045 38B -> 43B 40B -> 43B 41B -> 43B</s**2>	3:	3.030-A 0.13575 0.95004 -0.21180	1.7011 eV	728.83 nm	f=0.0242
Excited State <s**2>=2.032 32B -> 43B 33B -> 43B 34B -> 43B 36B -> 43B 38B -> 43B 39B -> 43B 40B -> 43B 41B -> 43B</s**2>	4:	3.021-A 0.25444 -0.12251 0.36617 0.12482 0.76357 0.18351 -0.22768 -0.27544	2.4502 eV	506.01 nm	f=0.0009
Excited State <s**2>=2.069 44A -> 46A 42B -> 44B</s**2>	5:	3.045-A 0.96335 0.21387	2.7882 eV	444.67 nm	f=0.0037
Excited State <s**2>=2.074 44A -> 45A 44A -> 51A 41B -> 44B</s**2>	6:	3.049-A 0.93918 0.10211 -0.21757	2.9772 eV	416.45 nm	f=0.0657
Excited State <s**2>=2.038 44A -> 45A</s**2>	7:	3.025-A 0.10213	3.1387 eV	395.01 nm	f=0.0026

27B 30B 35B	-> 43B -> 43B -> 43B		0.11742 0.16853 -0.35247					
38B 39B	-> 43B -> 43B		-0.16073 0.86903					
Excited <\$**2>=2.	State 160	8:	3.105-A	3.4043	eV	364.20	nm	f=0.0041
43A 44D	-> 46A		0.11847 0.24485					
44A	-> 48A		0.44437					
44A	-> 49A		0.41958					
44A	-> 50A		-0.11906					
44A	-> 51A		-0.40821					
41B	-> 44B		0.52686					
42B	-> 44B		-0.17157					
42B	-> 46B		0.10558					
Excited	State 037	9:	3.025-A	3.4945	eV	354.80	nm	f=0.0010
44A	-> 47A		0.98220					
Excited <\$**2>=2.	State	10:	3.032-A	3.6508	eV	339.61	nm	f=0.0033
34B	-> 43B		-0.14549					
35B	-> 43B		-0.18872					
36B	-> 43B		0.78160					
37B	-> 43B		0.51309					
39B	-> 43B		-0.17477					
41B	-> 44B		-0.11110					
Excited <\$**2>=2.	State 043	11:	3.029-A	3.7731	eV	328.60	nm	f=0.0007
35B	-> 43B		-0.10468					
36B	-> 43B		-0.59026					
37B	-> 43B		0.75112					
39B	-> 43B		-0.12157					
41B	-> 44B		-0.11296					
Excited	State 042	12:	3.028-A	3.8436	eV	322.57	nm	f=0.0100
35B	-> 43B		0.84175					
37B	-> 43B		0.28690					
38B	-> 43B		-0.17985					
39B	-> 43B		0.33023					
Excited	State	13:	3.038-A	3.9315	eV	315.36	nm	f=0.0113
גאיי גאיי גאיי. געע	-> ΔΩλ		0 86603					
44A	-> 49A		-0.26008					
44A	-> 50A		0.15642					
44A	-> 51A		0.31467					

41B	-> 44B		-0.14534					
Excited <s**2>=2. 44A 44A 44A 41B 42B</s**2>	State 138 -> 46A -> 49A -> 50A -> 44B -> 44B	14:	3.090-A -0.20400 0.17270 0.32998 0.22485 0.83846	4.0217	eV	308.29	nm	f=0.0178
Excited <s**2>=2. 44A 44A 40B 41B 42B</s**2>	State 102 -> 49A -> 50A -> 51A -> 45B -> 44B -> 44B	15:	3.067-A 0.63477 0.58338 0.29441 0.10172 -0.17654 -0.25246	4.0481	eV	306.28	nm	f=0.0045
Excited <s**2>=3. 41A 42A 44A 44A 44A 34B 40B 40B 41B 41B 42B</s**2>	State 191 -> 45A -> 45A -> 45A -> 49A -> 50A -> 43B -> 43B -> 44B -> 45B -> 45B -> 44B	16:	3.710-A 0.42205 0.27634 -0.11461 0.11712 -0.37657 0.10469 0.39015 0.46212 -0.14402 -0.14971 0.23703	4.1226	eV	300.74	nm	f=0.0171

Acetonitrile

TD-DFT/UB3LYP/6-31+G(d) E: -501.49507487 a.u.

Excited State	1:	3.015-A	0.5826	eV	2128.17	nm	f=0.0003
<s**2>=2.023</s**2>							
32B -> 43B		-0.11914					
37B -> 43B		0.19354					
38B -> 43B		0.20442					
40B -> 43B		0.22196					
41B -> 43B		0.85484					
42B -> 43B		-0.33520					
Excited State	2:	3.022-A	1.0609	e e	7 1168.62	nm	f=0.0003
		0 25450					
		0.33430					
42B -> 43B		0.93430					

Excited State <\$**2>=2.041	3:	3.027-A	1.5262 eV	812.39 nm	f=0.0353
40B -> 43B		0.94407			
41B -> 43B		-0.26764			
Excited State <s**2>=2.031</s**2>	4:	3.020-A	2.4453 eV	507.03 nm	f=0.0008
32B -> 43B		-0.30993			
34B -> 43B		0.30192			
30B -> 43B 37B -> 43B		0.16276 0.41201			
38B -> 43B		0.64684			
39B -> 43B		-0.23079			
40B -> 43B		-0.20791			
41B -> 43B		-0.26476			
Excited State	5:	3.043-A	2.7540 eV	450.20 nm	f=0.0050
<s**2>=2.065</s**2>		0 06945			
44A = 43A 42B = 44B		0.19966			
		0.13300			
Excited State	6:	3.032-A	3.0422 eV	407.55 nm	f=0.0142
<s^^2>=2.049 44a -> 46a</s^^2>		0 43987			
30B -> 43B		-0.13973			
35B -> 43B		0.36644			
37B -> 43B		0.13639			
39B -> 43B		0.73264			
41B -> 44B		-0.1/329			
Excited State	7:	3.049-A	3.0803 eV	402.50 nm	f=0.0659
<s**2>=2.074</s**2>		0 70999			
44A -> 48A 44A -> 48A		-0.16250			
35B -> 43B		-0.13042			
39B -> 43B		-0.45587			
41B -> 44B		-0.22255			
Excited State	8:	3.032-A	3.4343 eV	361.02 nm	f=0.0011
<s**2>=2.048</s**2>		0 10000			
44A -> 46A		-0.12980			
44A -> 49A		-0.10533			
34B -> 43B		0.13679			
37B -> 43B		0.66217			
38B -> 43B		-0.59742			
39B -> 43B		-0.10740			
710 -2 44B		-0.14334			
Excited State	9:	3.091-A	3.4656 eV	357.76 nm	f=0.0132
43A -> 45A		0.10288			

$44A \rightarrow 46A$ $44A \rightarrow 47A$ $44A \rightarrow 48A$ $44A \rightarrow 49A$ $37B \rightarrow 43B$ $38B \rightarrow 43B$ $40B \rightarrow 44B$ $41B \rightarrow 44B$ $42B \rightarrow 44B$		0.31619 0.13196 0.61245 0.20607 0.28462 -0.23734 0.14041 0.45932 -0.14856				
Excited State <\$**2>=2.040	10:	3.026-A	3.6737 e	eV 337.49	nm	f=0.0007
44A -> 47A 44A -> 50A		0.96653 -0.10805				
Excited State <s**2>=2.039 35B -> 43B 36B -> 43B 37B -> 43B 38B -> 43B</s**2>	11:	3.026-A 0.60961 0.66920 -0.27596 -0.13848	3.7071 e	eV 334.45	nm	f=0.0110
39B -> 43B	10.	-0.22612	2 0102			
<pre><s**2>=2.043 26B -> 43B 32B -> 43B 35B -> 43B 36B -> 43B 39B -> 43B 41B -> 44B</s**2></pre>	12.	-0.13784 -0.11650 -0.62232 0.65327 0.30473 -0.10532	3./1/3 6	=v 333.53	mu	L=0.0072
Excited State <s**2>=2.180 44A -> 45A 41B -> 44B 42B -> 44B</s**2>	13:	3.118-A -0.19487 0.22451 0.90855	4.0457 e	eV 306.46	nm	f=0.0226
Excited State <s**2>=2.747 41A -> 46A 42A -> 46A 43A -> 45A 44A -> 46A 44A -> 48A 44A -> 48A 44A -> 50A 34B -> 43B 40B -> 44B 40B -> 46B 41B -> 44B</s**2>	14:	3.462-A 0.25077 0.25170 -0.14085 -0.13902 0.40677 -0.33532 -0.17505 0.25084 0.31278 0.33878 -0.33150 -0.10958	4.1222 e	⊵∇ 300.77	nm	f=0.0598

42B	->	44B	0.13784
42B	->	45B	-0.18187

1.3 Optimized geometries, Energies and TD-DFT calculations of 2

DFT/UB3LYP/6-31+G(d) E: -501.51927154 a.u.

Center Number	Atomic Number	Atomic Type	Coord X	linates (Ang Y	stroms) Z
1	б	0	2.352455	1.317309	0.628701
2	6	0	1.019730	0.900591	0.586137
3	6	0	0.681324	-0.354565	0.052631
4	6	0	1.709375	-1.183502	-0.432590
5	б	0	3.038110	-0.768723	-0.387741
б	б	0	3.363930	0.484685	0.143815
7	1	0	2.599018	2.291562	1.042825
8	1	0	0.251472	1.565501	0.966284
9	1	0	1.439998	-2.152371	-0.840990
10	1	0	3.821632	-1.420312	-0.766080
11	1	0	4.400867	0.809198	0.180360
12	6	0	-0.726105	-0.876845	-0.014011
13	8	0	-0.951505	-1.987961	-0.477012
14	б	0	-1.902496	0.012901	0.449836
15	1	0	-1.574489	0.649472	1.277804
16	6	0	-2.266204	0.886832	-0.732154
17	1	0	-2.721748	0.365149	-1.577984
18	б	0	-1.968502	2.305326	-0.837345
19	1	0	-1.047555	2.672577	-1.292891
20	1	0	-2.683432	3.062964	-0.512712
21	6	0	-3.088686	-0.848804	0.915700
22	1	0	-3.909698	-0.205087	1.249529
23	1	0	-3.448143	-1.487539	0.104322

TD-DFT calculations of 2

Gas Phase

TD-DFT/UB3LYP/6-31+G(d) E: -501.41931789 a.u.

Excited State	1:	3.283-A	2.7199 eV	455.84 nm	f=0.0181
<s**2>=2.444</s**2>		0 10611			
41A -> 45A		-0.12611			
42A -> 45A		-0.18554			
44A -> 45A		0.90677			
42B -> 43B		0.30070			
Excited State	2:	3.442-A	3.2256 eV	384.37 nm	f=0.0125
<s**2>=2.711</s**2>					
40A -> 45A		0.12780			
41A -> 45A		-0.16851			
43A -> 45A		0.11273			
44A -> 45A		-0.33253			
42B -> 43B		0.82266			
42B -> 44B		0.20421			
42B -> 45B		-0.22657			
42B -> 51B		0.13046			
Excited State	3:	3.958-A	3.3262 eV	372.75 nm	f=0.0057
<s**2>=3.666</s**2>					
40A -> 45A		-0.36488			
40A -> 46A		0.16135			
41A -> 45A		0.33769			
41A -> 46A		0.14709			
42A -> 45A		-0.25488			
42A -> 46A		-0.10531			
44A -> 45A		-0.12157			
40B -> 43B		0.32199			
40B -> 45B		-0.19804			
40B -> 46B		-0.18466			
41B -> 43B		0.48929			
41B -> 44B		0.13903			
41B -> 45B		-0.27178			
41B -> 46B		0.16395			
42B -> 43B		0.19520			
Excited State	4:	3.038-A	3.6017 eV	344.24 nm	f=0.0036
<s**2>=2.057</s**2>					

42A -> 45A 43A -> 45A 42B -> 43B		-0.16116 0.97098 -0.12255			
Excited State <\$**2>=3.462	5:	3.853-A	3.9028 eV	317.68 nm	f=0.0005
40A -> 45A		-0.39318			
40A -> 46A		0.11357			
41A -> 45A		-0.26722			
42A -> 45A		0.18709			
44A -> 46A		-0.14536			
40B -> 43B		0.61084			
40B -> 44B		0.10678			
40B -> 45B		-0.24499			
41B -> 43B 41B -> 45B		-0.44955			
ATP -> ADP		0.13098			
Excited State	6:	3.480-A	3.9958 eV	310.29 nm	f=0.0065
<s**2>=2.778</s**2>					
41A -> 45A		0.50906			
42A -> 45A		0.72446			
42A -> 51A		0.13504			
43A -> 45A		0.17884			
44A -> 45A		0.16756			
42B -> 43B		0.17063			
42B -> 44B		0.21065			
42B -> 45B		0.17410			
Excited State <s**2>=2.059</s**2>	7:	3.039-A	4.0692 eV	304.69 nm	f=0.0006
42A -> 45A		-0.13463			
42B -> 43B		-0.25734			
42B -> 44B		0.94534			

Acetonitrile

TD-DFT/UB3LYP/6-31+G(d) E: -501.42837156 a.u.

Excited State	1:	3.170-A	2.6577 eV	466.51 nm	f=0.0332
<s**2>=2.263</s**2>					
40A -> 45A		-0.17667			
44A -> 45A		0.95300			
42B -> 43B		0.17585			
Excited State	2:	3.812-A	3.3024 eV	7 375.44 nm	f=0.0008
<s**2>=3.382</s**2>					
41A -> 45A		0.39403			
42A -> 45A		0.24799			
42A -> 46A		0.17103			
43A -> 45A		0.29024			

44A -> 45A 40B -> 43B 40B -> 45B 40B -> 46B 41B -> 46B 42B -> 43B 42B -> 45B		-0.10936 -0.24259 0.16209 0.10830 0.16488 0.65373 -0.19468					
Excited State <s**2>=3.091 40A -> 45A 41A -> 45A 42A -> 45A 42A -> 46A 43A -> 45A 44A -> 45A 40B -> 43B 40B -> 43B 40B -> 45B 41B -> 45B 41B -> 46B 42B -> 43B 42B -> 50B</s**2>	3:	3.656-A 0.14577 0.28372 0.21779 0.14018 -0.38361 0.17566 -0.41483 0.17757 0.45446 -0.15987 0.12844 -0.38648 -0.10062	3.3615 (eV	368.84 r	nm	f=0.0080
Excited State <s**2>=2.127 43A -> 45A 44A -> 45A 40B -> 43B 41B -> 43B 42B -> 43B</s**2>	4:	3.083-A 0.86839 0.10878 -0.13940 0.15998 -0.40433	3.4268 6	eV	361.81 r	nm	f=0.0160
Excited State <s**2>=3.491 41A -> 45A 41A -> 46A 42A -> 45A 44A -> 46A 40B -> 43B 40B -> 43B 41B -> 45B 41B -> 45B 42B -> 43B</s**2>	5:	3.868-A -0.29699 0.10532 0.42164 -0.12292 0.48483 -0.16906 0.60450 -0.19239 0.13370	3.8289 6	eV	323.81 r	nm	f=0.0007
Excited State <s**2>=2.750 40A -> 45A 40A -> 49A 40A -> 50A 44A -> 45A 42B -> 43B 42B -> 45B</s**2>	6:	3.464-A 0.92240 -0.10143 -0.13068 0.13689 0.21999 0.10088	4.0767 6	eV	304.13 r	nm	f=0.0080

1.4 Optimized geometries, Energies of β substituted peroxy radical

DFT/UB3LYP/6-31+G(d) E: -651.89761141 a.u.

Center	Atomic	Atomic	c Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	-3.163210	-1.434612	-0.617037
2	б	0	-1.830566	-1.105426	-0.359970
3	6	0	-1.488368	0.180017	0.093815
4	б	0	-2.510784	1.127886	0.283314
5	б	0	-3.838658	0.800753	0.021631
б	б	0	-4.168557	-0.482977	-0.429111
7	1	0	-3.414272	-2.433011	-0.965096
8	1	0	-1.067734	-1.861908	-0.512601
9	1	0	-2.238174	2.117408	0.636140
10	1	0	-4.618378	1.543379	0.169049
11	1	0	-5.205051	-0.739657	-0.632650
12	б	0	-0.081453	0.602569	0.397422
13	8	0	0.151625	1.729387	0.817376
14	б	0	1.073015	-0.399446	0.246906
15	1	0	0.836582	-1.135751	-0.529315
16	б	0	2.340033	0.347065	-0.198223
17	1	0	2.683200	1.046203	0.565499
18	6	0	2.252972	0.977381	-1.530819
19	1	0	2.844106	1.854355	-1.766730
20	1	0	1.685929	0.502630	-2.326848
21	б	0	1.260213	-1.132185	1.595473
22	1	0	2.052120	-1.882167	1.519881
23	1	0	1.529641	-0.418249	2.381764
24	1	0	0.335942	-1.636736	1.897427
25	8	0	3.412175	-0.736062	-0.232499
26	8	0	4.624735	-0.223656	-0.266993

1.4. Optimized geometries, Energies of γ substituted peroxy radical

DFT/UB3LYP/6-31+G(d) E: -651.90249942 a.u.

Center	Atomic	 Atomic	c Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-2.297464	-1.837963	0.793691
2	6	0	-1.274041	-0.887385	0.769652
3	б	0	-1.439164	0.322308	0.073049
4	6	0	-2.656252	0.559236	-0.593080
5	б	0	-3.673403	-0.391340	-0.574004
б	б	0	-3.496381	-1.594322	0.119983
7	1	0	-2.157075	-2.765833	1.341662
8	1	0	-0.358947	-1.096816	1.313555
9	1	0	-2.780669	1.498624	-1.122268
10	1	0	-4.605428	-0.197083	-1.098283
11	1	0	-4.290827	-2.335995	0.137460
12	б	0	-0.393929	1.398298	0.010229
13	8	0	-0.663287	2.499038	-0.448287
14	б	0	1.061437	1.096366	0.459228
15	1	0	1.056418	0.315802	1.226097
16	б	0	1.779573	0.584993	-0.755053
17	1	0	2.017186	1.304656	-1.534897
18	б	0	2.212070	-0.813912	-0.909968
19	1	0	2.543040	-1.058802	-1.921288
20	б	0	1.724215	2.361203	1.036547
21	1	0	2.751661	2.137837	1.341254
22	1	0	1.739183	3.163696	0.294247
23	1	0	1.170256	2.721285	1.910904
24	1	0	1.476151	-1.548291	-0.567580
25	8	0	3.415288	-1.047436	-0.021124
26	8	0	3.767886	-2.317098	-0.018403

Figure S1. A) Laser flash photolysis of acetophenone in argon-saturated acetonitrile. B) Kinetic traces obtained at 320 nm at various concentration of crotyl chloride. C) The rate constant for the decay of T1K of acetophenone as a function of crotyl chloride concentration.

3. NMR and IR spectra of 1

3.1 ¹H NMR spectrum of 2-methyl-1-phenyl-but-3-en-1-one (1)

3.2. ¹³C NMR spectrum of 2-methyl-1-phenyl-but-3-en-1-one (1)

3.3. FTIR of spectrum 2-methyl-1-phenyl-but-3-en-1-one (1)

4. Synthesis of 1-d

4.1 Synthesis of racemic (Z)-1-Buten-3-ol-1D

(Z)-1Buten-3-ol-1D was synthesized by following the procedure reported by Tauchert et al.^[1] In a flame dried three-necked flask (100 ml) equipped with a magnetic stirrer and a reflux condenser LiAlH₄ (2.0 g, 52 mmol, 1.3 eqiuv) was suspended with dry THF (50 mL). But-3-yn-2-ol (3.2 mL, 39 mmol, 1 equiv) was added by syringe and when an exothermic reaction commenced, reaction mixture was cooled in an ice bath. The ice bath was removed after the exothermic reaction stopped and reaction mixture was stirred for another 18 h at room temperature. The mixture was then cooled again in an ice bath and quenched with D₂O (5 mL). The formed slurry was filtered, the separated solid was extracted with THF (3 x 10 mL), and the resulting solution was dried over MgSO₄. The desired compound was isolated by Vigreux column distillation as a colorless liquid (0.99 g, 13.6 mmol, 35% yield). 30% over deuteration for the terminal E-hydogen (H_{0.7}D_{1.3}C=CH-CH(OD)CH₃).¹H NMR data match the reported data in the literature.^[1]

¹H NMR (400 MHz, CDCl₃): δ 1.31 (d, 3H, J = 6.4 Hz), 4.3(m, 1H), 5.05 (dd, 0.7H, J = 10.4Hz, 1.2 Hz), 5.91 (m, 1 H) ppm.

4.2 Synthesis of racemic (Z)-3-chloro-1-butene-1D

Synthesized (Z)-1Buten-3-ol-1D (0.99g, 13.6 mmol, 1 eqiuv) was added to hexachloroacetone (4.89 mL, 26.5 mmol, 2 eqiuv)in a round bottom flask equipped with a magnetic stir bar and the mixture was cooled to 0°C. PPh₃(3.74 g, 14 mmol, 1 eqiuv) was added slowly within 20 min, with the mixture never exceeding 10°C. The mixture color changed to very dark violet. The mixture was warmed to room temperature and stirred for another 30 min. Vacuum distillation was used to isolate the (Z)-3-chloro-1-butene-1D as a colorless liquid (0.84 g, 9 mmol). ¹H NMR data match the reported data in the literature.^[1]

¹H NMR (400 MHz, CDCl₃): δ 1.60 (d, 3H, J = 6.4 Hz), 4.3 (m, 1H), 5.09 (dd, 0.7 H J = 10Hz, 0.8 Hz), 5.95 (m, 1 H) ppm.

4.3 Synthesis of 2-methyl-1-phenylbut-3-en-1-ol-4D and Oxidation to 2-methyl-1-phenylbut-3-en-1-ol-4D (1-d)

Synthesis of 2-methyl-1-phenylbut-3-en-1-ol-4D was carried out by using the same procedure described above for 2-methyl-1-phenylbut-3-en-1-ol. Benzaldehyde (0.817 g, 7 mmol) and (Z)-3-chloro-1-butene-1D (.84 g, 9 mmol, 1.2 eqiuv) resulted in crude 2-methyl-1-phenylbut-3-en-1-ol-4D in 1.86 g, 11.4 mmol. IR (neat): 3375 (br, OH). Without further purification the resulted 2-methyl-1-phenylbut-3-en-1-ol-4D (1.86 g, 11.4 mmol) was oxidized with Jones reagent as described above gave mixture of trans and cis 2-methyl-1-phenylbut-3-en-1-ol-4-D 0.82 g, (5 mmol, 44 % yield).

¹H NMR of cis-1d and trans-1-d (CDCl3, 400 MHz): δ 1.33 (d, 6H, J = 6.8 Hz), 4.3 (m, 2H), 5.12 (dd, 0.72 H, J = 10.4 Hz, 0.8 Hz), 5.17 (dd, 0.76 H, J = 17.2 Hz, 1.2 Hz), 5.99 (m, 2 H) ppm. ¹³C NMR (CDCl3, 400 MHz): δ 201.2, 138, 137.9, 136.3, 132.9, 128.6, 128.5, 116.5, 45.4, 17.0 ppm. GC/MS (EI): m/z: 161 (M+)

4.4 References

 M. E. Tauchert, D. C. M. Warth, S. M. Braun, I. Gruber, A. Ziesak, F. Rominger, et al. Highly Efficient Nickel-Catalyzed 2-Methyl-3-butenenitrile Isomerization: Applications and Mechanistic Studies Employing the TTP Ligand Family. *Organometallics*, 2011, 30, 2790

5. ¹H-NMR spectra before and after irradiation of 1-d

Figure S2. ¹H-NMR spectra of 1 A) Before (trans-cis ratio 47%) and B) after irradiation through Pyrex filter for 5 hours. The trans to cis ratio is (44%).