Supplementary Material

for

Engineering disorder at a Nano-scale: A Combined TEM and XAS investigation of Amorphous *vs.* Nano-crystalline Sodium Birnessite

Rosalie K. Hocking,^{A,E} Hannah J. King,^A Aimee Hesson,^A Shannon Bonke,^B Bernt Johannessen,^C Monika Fekete,^B Leone Spiccia,^B and Shery L. Y. Chang^D

^AMatter and Materials Group (Chemical Sciences), College of Science, Technology and Engineering, James Cook University, Townsville, Qld 4811, Australia

^BSchool of Chemistry and Australian Centre of Excellence for Electromaterials Science, Monash University, Vic. 3800, Australia

^CAustralian Synchrotron, 800 Blackburn Road, Clayton, Vic. 3168, Australia

^DLeRoy Eryring Centre for Solid State Science, Arizona State University, Tempe, Arizona, Palm Walk Tempe, AZ 85287, USA

^ECorresponding author. Email: rosalie.hocking@jcu.edu.au

High concentration of Mn²⁺, precipitation occurs faster, less crystalline

Lower concentration of Mn²⁺, precipitation occurs slower, more crystalline

Figure S1. HR-TEM selected area electron diffraction patterns taken on materials made a two different Mn concentrations. The diffraction images were taken at a camera length of 230 mm for both.

Figure S2. Comparison of the data presented in the paper (left) with that with 10 % PO_4^{3-} reported.(right)

Figure S3. Comparison of the XAS data taken on the sodium birnessite bulk material and the material after screen printing.

Figure S4. HR-TEM Images comparing sodium birnessite (left) with sodium birnessite 1.5% Phosphate doped (right) as screen printed.

Figure S5. Percent change in O_2 concentration (as % O_2) plotted over time after the addition of oxone to 0.05g of MnO_x material.

Scanning Electron Microscopy: Samples were ground to a fine powder and Au sputter-coated. The Scanning Electron Microscopy (SEM) analysis was conducted with a Jeol JSM5410LV scanning microscope at 25 kV. Samples were analysed at a scale of $1-100 \mu m$.

Figure S6. SEM images of Na-birnessite, A. control made with 40mM Mn(II); B. phosphate doped made with 40mM Mn(II) (10%);C. Control sodium birnessite made with 400mM Mn(II) D. phosphate doped 400mM Mn(II) (1.5%).