SUPPLEMENTARY MATERIAL

Palladium catalyzed Suzuki cross-coupling of 2-halo-deazapurines with potassium organotrifluoroborate salts in the regioselective synthesis of imidazo[4,5-b]pyridine analogues

Savitha Bhaskaran\(^b\), Ayyiliath. M. Sajith\(^a\)*, M. Nibin Joy\(^c\), K.K. Abdul Khader\(^b\), A. Muralidharan\(^a\), M. Syed Ali Padusha\(^b\)*, Yadav D. Bodke

\(^a\)Post graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasargod.
\(^b\)Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirapalli
\(^c\)Department of P.G studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, India- 577451.

\(^*\)Both are equal contributors to the work

*Email id: sajithmeleveetil@gmail.com, Tel. No. +91 9901088933, Fax. No. +91 467 2280335, m.padusha@gmail.com
CONTENTS

1) Experimental protocol... 4-5
2) 1H NMR of Compound 3a...6
3) 1H NMR of Compound 3b...7
4) 1H NMR of Compound 5r..8
5) 13C NMR of Compound 5r...9
6) 1H NMR of Compound 5a..10
7) LCMS Of compound 5a...11
8) 1H NMR of Compound 5b..12
9) 13C NMR of Compound 5b...13
10) 1H NMR of Compound 5c...14
11) 13C NMR of Compound 5c...15
12) 1H NMR of Compound 5d...16
13) 13C NMR of Compound 5d...17
14) 1H NMR of Compound 5e...18
15) 13C NMR of Compound 5e...19
16) 1H NMR of Compound 5f...20
17) 13C NMR of Compound 5f...21
18) 1H NMR of Compound 5h...22
19) 13C NMR of Compound 5h...23
20) 1H NMR of Compound 5k...24
21) 13C NMR of Compound 5k...25
22) LCMS Of compound 5k...26
23) 1H NMR of Compound 5i...27
24) 13C NMR of Compound 5i...28
25) LCMS Of compound 5l...29
26) 1H NMR of Compound 5l...30
27) 13C NMR of Compound 5i...31
28) LCMS Of compound 5l...32
29) 1H NMR of Compound 5j...33
30) 1H NMR of Compound 5m...34
31) LCMS Of compound 5m...35
32) 1H NMR of Compound 5n...36
33) LCMS Of compound 5n...37
1) Procedure for the coupling of 2-halo imidazo[4,5-b]pyridine with different potassium organotrifluoroborates

Method A

To a degassed solution of 3-substituted-2-halo imidazo[4,5-b]pyridine derivative, 3 (1 equiv.) in acetonitrile/water (1:2), was added Palladium catalyst (4 mol %), and phosphine ligand (8 mol %). The solution was again purged with nitrogen and stirred at room temperature for 15 min, at this time the potassium organotrifluoroborate salts (1.3 equiv.), cesium acetate (3 equiv.) and tetrabutylammonium acetate (1 equiv.) were added. The reaction solution was purged again with nitrogen and then placed in the microwave and heated for 20 to 50 min at 150 °C. When TLC and LC-MS showed full consumption of starting materials, the reaction mixture was diluted with ethyl acetate, separated the ethyl acetate layer, washed with water, followed by brine wash and was dried over anhydrous sodium sulfate and concentrated to get the crude material. The crude product was directly purified by column chromatography (0–20% hexane/EtOAc) to isolate the 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridine derivatives.

Method B

To a degassed solution of 3-substituted-2-halo imidazo[4,5-b]pyridine derivative (1 equiv.) in acetonitrile/water (1:2) in a sealed vial, was added palladium catalyst (4 mol%), and phosphine ligand (8 mol%). The solution was again purged with nitrogen, stirred at room temperature for 15 min. and potassium organotrifluoroborate salts (1.3 equiv.) and cesium acetate (3 equiv.) were added. The reaction contents were then heated to 90 °C for 15 h. When TLC and LC-MS showed complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate, separated the ethyl acetate layer, washed with water, followed by brine wash and dried over anhydrous sodium sulfate and concentrated to get the crude material. The crude product was directly purified by column chromatography (0–20% hexane/EtOAc) to isolate the 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridine derivatives.

Method C

To a degassed solution of 3-substituted-2-halo imidazo[4,5-b]pyridine derivative (1 equiv.) in acetonitrile/ water (1:2) in a sealed vial, was added palladium catalyst (4 mol%), and phosphine ligand (8 mol%). The solution was again purged with nitrogen, stirred at room temperature for 15 min. and potassium organotrifluoroborate salts (1.3 equiv.) and cesium
acetate (3 equiv.) were added. The reaction contents were then heated to 90 °C for 3 h. When TLC and LC-MS showed full consumption of starting materials, the reaction mixture was diluted with ethyl acetate, separated the ethyl acetate layer, washed with water, followed by brine wash and dried over anhydrous sodium sulfate and concentrated to get the crude material. The crude product was directly purified by column chromatography (0–20% hexane/EtOAc) to isolate the 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridine derivatives.

The synthesis of the halo intermediates 3 (3a, 3b, and 3c) was done according to the procedures mentioned in reference 21. The intermediates were found to be very labile and was found to degrade over a period of time (stored at −20 °C and used immediately for the coupling step)
Method Info:
Solvent A: 0.1% TFA
Solvent B: Acetonitrile
Flow Rate: 4.0 mL/Min
Temp: 45°C
Column: Xbridge C18 (4.6x50)mm, 5um
Time (min.): 0-4.0
Flow: 5-95

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>RT (min)</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.836</td>
<td>13.319</td>
<td>0.038</td>
</tr>
<tr>
<td>2</td>
<td>2.060</td>
<td>2.052</td>
<td>0.235</td>
</tr>
<tr>
<td>3</td>
<td>2.283</td>
<td>18.558</td>
<td>0.235</td>
</tr>
<tr>
<td>4</td>
<td>2.384</td>
<td>18.335</td>
<td>0.097</td>
</tr>
<tr>
<td>5</td>
<td>2.732</td>
<td>18.430</td>
<td>0.097</td>
</tr>
<tr>
<td>6</td>
<td>2.798</td>
<td>2.06</td>
<td>0.030</td>
</tr>
<tr>
<td>7</td>
<td>2.866</td>
<td>2.045</td>
<td>0.234</td>
</tr>
<tr>
<td>8</td>
<td>2.913</td>
<td>13.112</td>
<td>0.356</td>
</tr>
</tbody>
</table>

![Molecule Image]
Method info:
A: 10mM NH4OAC in Water
B: Methanol
Flow: 4 ml/min
Temp: 45°C
Column: Xbridge C18 (50x4.6), 5µm
Time (min): 0---4
5---95
1-(2,4-dimethoxybenzyl)-1H-imidazo[4,5-b]pyridine