SUPPLEMENTARY MATERIAL

Palladium catalyzed Suzuki cross-coupling of 2-halo-deazapurines with potassium organotrifluoroborate salts in the regioselective synthesis of imidazo[4,5-b]pyridine analogues
Savitha Bhaskaran ${ }^{b ₹}$, Ayyiliath. M. Sajith ${ }^{a{ }^{* *},}$ M. Nibin Joy ${ }^{c}$, K.K. Abdul Khader ${ }^{b}$, A. Muralidharan ${ }^{a}$, M. Syed Ali Padusha ${ }^{b}$ \%, Yadav D. Bodke
${ }^{\text {a }}$ Post graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasargod.
${ }^{\mathrm{b}}$ Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirapalli
${ }^{\text {c }}$ Department of P.G studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, India- 577451.
${ }^{¥}$ Both are equal contributors to the work
*Email id: sajithmeleveetil@gmail.com, Tel. No. +91 9901088933, Fax. No. +91 467 2280335, m.padusha@gmail.com

CONTENTS

1) Experimental protocol 4-5
2) ${ }^{1} \mathrm{H}$ NMR of Compound 3a 6
3) ${ }^{1}$ H NMR of Compound 3b 7
4) ${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{5 r}$ 8
5) ${ }^{13} \mathrm{C}$ NMR of Compound 5 r 9
6) ${ }^{1} \mathrm{H}$ NMR of Compound 5 a 10
7) LCMS Of compound 5a 11
8) ${ }^{1} H$ NMR of Compound 5 b 12
9) ${ }^{13} \mathrm{C}$ NMR of Compound 5 b 13
10) ${ }^{1} \mathrm{H}$ NMR of Compound 5 c 14
11) ${ }^{13} \mathrm{C}$ NMR of Compound 5 c 15
12) ${ }^{1} \mathrm{H}$ NMR of Compound 5 d 16
13) ${ }^{13}$ C NMR of Compound 5 d 17
14) ${ }^{1} \mathrm{H}$ NMR of Compound 5 e 18
15) ${ }^{13}$ C NMR of Compound 5 e 19
16) ${ }^{1} \mathrm{H}$ NMR of Compound 5 ff 20
17) ${ }^{13} \mathrm{C}$ NMR of Compound 5 f. 21
18) ${ }^{1} \mathrm{H}$ NMR of Compound 5 h 22
19) ${ }^{13} \mathrm{C}$ NMR of Compound 5 h 23
20) ${ }^{1} \mathrm{H}$ NMR of Compound 5 k 24
21) ${ }^{13}$ C NMR of Compound 5 k 25
22) LCMS Of compound 5 k 26
23) ${ }^{1} \mathrm{H}$ NMR of Compound $\mathbf{5 i}$ 27
24) ${ }^{13} \mathrm{C}$ NMR of Compound 5 i 28
25) LCMS Of compound 51 29
26) ${ }^{1} \mathrm{H}$ NMR of Compound 51 30
27) ${ }^{13}$ C NMR of Compound 5 i 31
28) LCMS Of compound 51 32
29) ${ }^{1} \mathrm{H}$ NMR of Compound 5 j 33
30) ${ }^{1}$ H NMR of Compound 5 m 34
31) LCMS Of compound 5 m 35
32) ${ }^{1} \mathrm{H}$ NMR of Compound 5 n. 36
33) LCMS Of compound 5 n 37

1) Procedure for the coupling of 2-halo imidazo[4,5-b]pyridine with different potassium organotrifluoroborates

Method A

To a degassed solution of 3-substituted-2-halo imidazo[4,5-b]pyridine derivative, $\mathbf{3}$ (1 equiv.) in acetonitrile/water (1:2), was added Palladium catalyst (4 mol \%), and phosphine ligand ($8 \mathrm{~mol} \%$). The solution was again purged with nitrogen and stirred at room temperature for 15 min , at this time the potassium organotrifluoroborate salts (1.3 equiv.), cesium acetate (3 equiv.) and tetrabutylammonium acetate (1 equiv.) were added. The reaction solution was purged again with nitrogen and then placed in the microwave and heated for 20 to 50 min at $150{ }^{\circ} \mathrm{C}$. When TLC and LC-MS showed full consumption of starting materials, the reaction mixture was diluted with ethyl acetate, separated the ethyl acetate layer, washed with water, followed by brine wash and was dried over anhydrous sodium sulfate and concentrated to get the crude material. The crude product was directly purified by column chromatography ($0-20 \%$ hexane/EtOAc) to isolate the 3 -substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridine derivatives.

Method B

To a degassed solution of 3-substituted-2-halo imidazo[4,5-b]pyridine derivative (1 equiv.) in acetonitrile/water (1:2) in a sealed vial, was added palladium catalyst (4 $\mathrm{mol} \%$), and phosphine ligand ($8 \mathrm{~mol} \%$). The solution was again purged with nitrogen, stirred at room temperature for 15 min . and potassium organotrifluoroborate salts (1.3 equiv.) and cesium acetate (3 equiv.) were added. The reaction contents were then heated to $90^{\circ} \mathrm{C}$ for 15 h . When TLC and LC-MS showed complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate, separated the ethyl acetate layer, washed with water, followed by brine wash and dried over anhydrous sodium sulfate and concentrated to get the crude material. The crude product was directly purified by column chromatography ($0-20 \%$ hexane/EtOAc) to isolate the 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridine derivatives.

Method C

To a degassed solution of 3-substituted-2-halo imidazo[4,5-b]pyridine derivative (1 equiv.) in acetonitrile/ water (1:2) in a sealed vial, was added palladium catalyst (4 mol\%), and phosphine ligand ($8 \mathrm{~mol} \%$). The solution was again purged with nitrogen, stirred at room temperature for 15 min . and potassium organotrifluoroborate salts (1.3 equiv.) and cesium
acetate (3 equiv.) were added. The reaction contents were then heated to $90{ }^{\circ} \mathrm{C}$ for 3 h . When TLC and LC-MS showed full consumption of starting materials, the reaction mixture was diluted with ethyl acetate, separated the ethyl acetate layer, washed with water, followed by brine wash and dried over anhydrous sodium sulfate and concentrated to get the crude material. The crude product was directly purified by column chromatography ($0-20 \%$ hexane/EtOAc) to isolate the 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridine derivatives.

The synthesis of the halo intermediates $\mathbf{3}(\mathbf{3 a}, \mathbf{3 b}$, and $\mathbf{3 c})$ was done according to the procedures mentioned in reference 21 . The intermediates were found to be very labile and was found to degrade over a period of time (stored at $-20^{\circ} \mathrm{C}$ and used immediately for the coupling step)

\| Peak	1 R?	1 Area	Area	
\| No	\| min	1	3	1
11	12.836	$13.319 \mathrm{e}+0$	0.038	,
12	12.060	$12.053 \mathrm{e}+0$	10.235	1
13	12.283	$18.564 e+0$	198.051	1
14	12.564	18.375e+0	10.959	I
15	12.732	$18.435 e+0$	10.097	1
16	12.780	$12.597 e+0$	10.030	1
17	12.866	$12.045 \mathrm{e}+0$	10.234	1
18	12.913	$13.112 \mathrm{e}+0$	10.356	I


``` Manchink \(1 \mid\)
```


Injection Dave	12- Jun- 2013	3:39:23 FX
Injaction wal	2.0ut	
גeq Karnod		

Cils)

Nial No. : $81-\mathrm{D}=07$
Injection Date : 15-Mar-2013
Injection vol 1 2.OuL
acq Method : METHOD3\AT_595FAD.M

Mathed infp :A-0.1之

is $5-55 \quad 55 \quad 55-5 \quad 5$

Method info :
A: 10 mm NH4OAC in Water
B: :Nethanol
Flow: 4 ml/xin
Terp : $45^{\circ} \mathrm{C}$
Column: Xbridge c18 (50×4.6) ,5u

Time (min) : $0 \ldots-4$
*B : 5~-95

DAD1 B, Sig=220,4 Refooff

* Weas. R Area Area s
12.0711 .93703 96.6.4
$\begin{array}{llll}2 & 2.175 & 67.894 & 3.386\end{array}$

 간№

Nosise

