Supplementary Material for

Antimicrobial properties of mono- and di- fac-rhenium tricarbonyl 2-pyridyl-1,2,3-triazole complexes

Sreedhar V. Kumar,A,B Warrick K. C. Lo,A Heather J. L. Brooks,B Lyall R. Hanton,A and James D. CrowleyA,C

A Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

B Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.

C Corresponding Author: E-mail: jcrowley@chemistry.otago.ac.nz, Fax: +64 3 479 7906; Tel: +64 3 479 7731.
Table of Contents

1. General experimental ... 3
2. General procedure for the synthesis of the ligands ... 3
 2.1 Synthesis of 1,8-bis{4-(2-pyridyl)-1H-1,2,3-triazol-1-yl}octane (6c)......................... 4
 2.2 Synthesis of 1,12-bis{4-(2-pyridyl)-1H-1,2,3-triazol-1-yl}dodecane (6d) 5
3. General procedure for the synthesis of the neutral rhenium(I) complexes 6
 3.1 Synthesis of 7aBr ... 7
 3.2 Synthesis of 7bBr ... 8
 3.3 Synthesis of 8aCl ... 9
 3.4 Synthesis of 8bCl ... 10
 3.5 Synthesis of 8cCl ... 11
 3.6 Synthesis of 8dCl ... 12
 3.7 Synthesis of 8aBr .. 13
 3.8 Synthesis of 8bBr .. 14
 3.9 Synthesis of 8cBr .. 15
 3.10 Synthesis of 8dBr ... 16
4. General procedure for the synthesis of the cationic rhenium(I) complexes.................... 17
 4.1 Synthesis of 7aDMAP ... 18
 4.2 Synthesis of 7bDMAP ... 19
 4.3 Synthesis of 8aDMAP .. 21
 4.4 Synthesis of 8bDMAP .. 23
 4.5 Synthesis of 8cDMAP .. 24
 4.6 Synthesis of 8dDMAP .. 25
5. Kinetic stability of the rhenium(I) complexes versus histidine .. 26
6. X-ray Crystallography ... 28
7. UV-vis spectra of the rhenium(I) complexes ... 30
8. Molecular models of stereoisomers of 8aDMAP and 7aDMAP ... 31
References .. 32
1. General experimental

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. A CEM S-class microwave reactor was used to carry out microwave enhanced reactions. 1H and 13C NMR were recorded on either a 400 MHz Varian MR or 500 MHz Varian AR spectrometer at 298 K. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to residual solvent peaks (CDCl₃: 1H δ 7.26, 13C δ 77.16 ppm; d₆-DMSO: 1H δ 2.50 ppm, 13C δ 39.50 ppm). Coupling constants (J) are reported in Hertz (Hz).

Standard abbreviations indicating multiplicity were used as follows: m = multiplet, q = quartet, p = pentet, ddd = doublet of doublet of doublets, dt = doublet of triplet, dd = doublet, t = triplet, d = doublet, s = singlet. IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer with an attached ALPHA-P measurement module. Microanalyses were performed at the Campbell Microanalytical Laboratory, University of Otago. High resolution electrospray mass spectra (HR-ESMS) were collected on a Bruker micrOTOF-Q spectrometer. UV-visible absorption spectra were acquired with a Perkin Elmer Lambda-950 spectrophotometer in DMF (10⁻⁵ M concentrations). Melting points were determined using a Leica VMHB melting bar. Bidentate 2-pyridyl-1,2,3-triazole ligands (5a and 5b),¹ di-(2-pyridyl-1,2,3-triazole) ligands (6a and 6b)² and rhenium complexes (7aCl and 7bCl)³ were prepared by previously reported procedures.

Safety Note: Whilst no problems were encountered during the course of this work, azide compounds are potentially explosive and appropriate precautions should be taken when working with them.

2. General procedure for the synthesis of the ligands

A dibromoalkane (1 eq.) and sodium azide (3 eq.) were dissolved in 4:1 DMF/H₂O (15 mL). The mixture was irradiated in a CEM microwave reactor at 125 °C (200 W, 200 PSI) for three hours. The reaction mixture was then cooled to room temperature and 2-ethynyl pyridine (2 eq.), sodium ascorbate (0.5 eq.), and CuSO₄•5H₂O (0.4 eq.) were added to the reaction mixture. The mixture was stirred for 12 hours. The suspension was partitioned between
aqueous 0.1 M NH₄OH/EDTA (100 mL) and CH₂Cl₂ (100 mL) and the layers were separated. The organic phase was washed with water (100 mL) and brine (100 mL), dried over MgSO₄ and the solvent was removed under reduced pressure to obtain the ligand as an off-white solid.

2.1 Synthesis of 1,8-bis{4-(2-pyridyl)-1H-1,2,3-triazol-1-yl}octane (6c)

The ligand was prepared by the general procedure described above. 1,8-Dibromooctane (0.528 g, 1.90 mmol, 1 eq.), sodium azide (0.378 g, 5.82 mmol, 3 eq.), 2-ethynylpyridine (0.400 g, 3.88 mmol, 2 eq.), sodium ascorbate (0.192 g, 0.97 mmol, 0.5 eq.) and CuSO₄·5H₂O (0.194 g, 0.77 mmol, 0.4 eq.) were used in the reaction. The product (6c) was obtained as an off-white solid after recrystallization from acetonitrile and diisopropyl ether. Yield: 0.670 g, 85%. Mp 158-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 4.9 Hz, 2H, H₃), 8.24-8.15 (m, H₄ and H₅), 7.79 (t, J = 7.8 Hz, 2H, H₆), 7.26-7.19 (m, 2H, H₇), 4.41 (t, J = 7.1 Hz, 4H, H₈), 1.96-1.83 (m, 4H, H₉), 1.33-1.25 (m, 8H, H₁₀ and H₁₁). ¹³C NMR (100 MHz, CDCl₃) δ 150.52, 149.50, 148.53, 137.02, 122.93, 121.89, 120.34, 50.54, 30.27, 28.85, 26.42. ATR-IR: υ (cm⁻¹) 3128, 2926, 2849, 1604, 1595, 1568, 1545, 1415, 1257, 1230, 1190, 1135, 1091, 1075, 1049, 1037, 996, 978, 846, 784, 756, 744. HR-ESMS (DMF) m/z = 425.2176 [6c+Na]⁺ (calc. for C₂₂H₂₆N₈Na⁺ 425.2173). Anal. calcd. for C₂₂H₂₆N₈: C 65.65, H 6.51, N 27.84%; found: C 65.55, H 6.40, N 27.93%.

Figure S1: ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 6c.
2.2 Synthesis of 1,12-bis(4-(2-pyridyl)-1H-1,2,3-triazol-1-yl)dodecane (6d)

The ligand was prepared by the general procedure describe above. 1,12-Dibromodecane (0.398 g, 1.20 mmol, 1 eq.), sodium azide (0.236 g, 3.60 mmol, 3 eq.), 2-ethynylpyridine (0.250 g, 2.40 mmol, 2 eq.), sodium ascorbate (0.120 g, 0.60 mmol, 0.5 eq.) and CuSO₄•5H₂O (0.121 g, 0.48 mmol, 0.4 eq.) were used in the reaction. The product (6d) was obtained as an off-white solid after recrystallization from dichloromethane and diisopropyl ether. Yield: 0.440 g, 79%. Mp 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 4.6 Hz, 2H, Hₐ), 8.23-8.14 (m, 4H, Hₐ and Hₖ), 7.79 (t, J = 7.7 Hz, 2H, Hₖ), 7.24 (dd, J = 7.5, 4.9 Hz, 2H, Hₖ), 4.41 (t, J = 7.2 Hz, 4H, Hₖ), 1.94 (p, J = 7.2 Hz, 4H, Hₖ), 1.38-1.18 (m, 16H, Hₐ-Hₖ). ¹³C NMR (100 MHz, CDCl₃) δ 150.88, 149.81, 148.80, 137.35, 123.23, 122.19, 120.66, 50.96, 30.67, 29.82, 29.73, 29.40, 26.88. ATR-IR: ν (cm⁻¹) 3129, 2978, 1599, 1568, 1416, 1319, 1225, 1188, 1137, 1077, 1045, 996, 895, 847, 785, 745. HR-ESMS (CH₂Cl₂) m/z = 481.2788 [6d+Na+]⁺ (calc. for C₂₆H₃₄N₈Na⁺ 481.2799). Anal. calcd. for C₂₆H₃₄N₈: C 68.09, H 7.47, N 24.43%; found: C 68.00, H 7.61, N, 24.36%.

Figure S2: ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 6d.
3 General procedure for the synthesis of the neutral rhenium(I) complexes

Either pentacarbonylrhenium(I) chloride or pentacarbonylrhenium(I) bromide (1.0 eq./2.0 eq.) and a 2-pyridyl-1,2,3-triazole or a di-(2-pyridyl-1,2,3-triazole) ligand (1.0 eq.) were dissolved in ethanol (15 mL). The resultant mixture was refluxed at 78 °C for 24 hours in the absence of light. The suspension was cooled to room temperature and the solvent volume was reduced by half using rotary evaporation. Addition of diethyl ether led to the precipitation of the rhenium(I) complexes as yellow solids, which were collected by filtration and washed with diethyl ether and petroleum ether and vacuum dried.
3.1 Synthesis of 7aBr

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) bromide (0.250 g, 0.616 mmol, 1.0 eq.) and 5a (0.145 g, 0.616 mmol, 1.0 eq.) were used in the reaction. Crystals suitable for X-ray crystallographic analysis were obtained by vapour diffusion of diisopropyl ether into an acetonitrile solution of the complex. Yield: 0.359 g, 99%. Mp > 230 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.29 (s, 1H, H_e), 9.00-8.95 (m, 1H, H_a), 8.32 (d, $J = 7.8$ Hz, 1H, H_d), 8.26 (td, $J = 7.8$, 1.4 Hz, 1H, H_c), 7.36 (ddd, $J = 7.3$, 5.5, 1.5 Hz, 1H, H_b), 7.49-7.40 (m, 5H, H_g-H_i), 5.92 (s, 2H, H_f). 13C NMR (100 MHz, d_6-DMSO) δ 197.08, 196.30, 188.91, 153.16, 148.62, 148.50, 140.54, 134.12, 129.10, 128.88, 128.50, 126.44, 125.96, 122.77, 54.77. ATR-IR: ν (cm$^{-1}$) 3083, 2024, 1886, 1867, 1615, 1571, 1458, 1341, 1263, 1120, 1051, 997, 852, 784, 685, 643, 531, 485. HR-ESMS (DMF) m/z = 608.9532 [7aBr$^+$Na$^+$] (calc. for C$_{17}$H$_{12}$BrN$_4$O$_3$Re$^+$ 608.9543). UV-vis (DMF) λ_{max}/nm (ϵ/L mol$^{-1}$ cm$^{-1}$): 330 (0.4 \times 104), 290 (1.1 \times 104), 275 (1.5 \times 104). Anal. calcd. for C$_{17}$H$_{12}$BrN$_4$O$_3$Re: C 34.82, H 2.06, N 9.55%; found: C 35.08, H 2.05, N 9.58%.

Figure S3: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 7aBr.
3.2 Synthesis of 7bBr

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) bromide (0.157 g, 0.387 mmol, 1.0 eq.) and 5b (0.100 g, 0.387 mmol, 1.0 eq.) were used in the reaction. Yield: 0.224 g, 94%. Mp 148-150 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.29 (s, 1H, H_a), 8.98 (d, $J = 5.5$ Hz, 1H, H_b), 8.30-8.26 (m, 2H, H_d and H_e), 7.63 (td, $J = 5.4$, 3.5 Hz, 1H, H_b), 4.62 (t, $J = 7.2$ Hz, 2H, H_f), 1.93 (p, 2H, $J = 7.1$ Hz, H_g), 1.34-1.19 (m, 10H, H_h-H_l), 0.90-0.77 (m, 3H, H_m). 13C NMR (100 MHz, d_6-DMSO) δ 197.15, 196.31, 188.95, 153.20, 148.75, 148.15, 140.53, 126.36, 125.71, 122.56, 51.57, 31.09, 29.08, 28.43, 28.19, 25.56, 22.04, 13.93. ATR-IR: ν (cm$^{-1}$) 3095, 2956, 2923, 2856, 2856, 2856, 2856, 2856, 2856, 2856, 2856, 2856, 2856. HR-ESMS (DMF) m/z = 529.1235 [7bBr-Br]$^+$ (calc. for C$_{18}$H$_{22}$N$_4$O$_3$Re 529.1244). UV-vis (DMF) $\lambda_{\text{max}/\text{nm}}$ (ϵ/L mol$^{-1}$ cm$^{-1}$): 330 (0.2 \times 104), 290 (0.6 \times 104), 275 (0.8 \times 104). Anal. calcd. for C$_{18}$H$_{22}$BrN$_4$O$_3$Re•0.5H$_2$O: C 35.01, H 3.75, N 9.07%; found: C 34.77, H 3.39, N 9.07%.

Figure S4: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 7bBr.
3.3 Synthesis of 8aCl

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) chloride (0.183 g, 0.507 mmol, 2.0 eq.) and 6a (0.100 g, 0.254 mmol, 1.0 eq.) were used in the reaction. Crystals suitable for X-ray crystallographic analysis were obtained by vapour diffusion of diethyl ether into dimethylformamide solution of the complex. Yield: 0.230 g, 90%. Mp > 230 °C. 1H NMR (500 MHz, d_6-DMSO) δ 9.29 (s, 2H, H_b), 8.99-8.89 (m, 2H, H_a), 8.34-8.17 (m, 4H, H_d and H_c), 7.66-7.59 (m, 2H, H_b), 7.54 (s, 4H, H_d), 5.93 (s, 4H, H_I). 13C NMR (125 MHz, d_6-DMSO) δ 197.37, 196.54, 189.30, 152.80, 148.42, 148.37, 140.44, 134.67, 129.09, 126.32, 125.91, 122.60, 54.13. ATR-IR: ν (cm$^{-1}$) 3120, 3029, 2936, 2021, 1892, 1859, 1616, 1581, 1467, 1454, 1422, 782, 483. HR-ESMS (DMF) $m/z = 971.0151$ [8aCl$^+$] (calc. for C$_{28}$H$_{18}$Cl$_2$N$_8$O$_6$Re$_2$: 971.0144). UV-vis (DMF) λ_{max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.4 × 104), 290 (1.1 × 104), 275 (1.3 × 104). Anal. calcd. for C$_{28}$H$_{18}$Cl$_2$N$_8$O$_6$Re$_2$: C 33.44, H 1.80, N 11.14%; found: C 33.82, H 1.91, N 11.17%.

![Figure S5: 1H NMR spectrum (500 MHz, d_6-DMSO, 298 K) of rhenium complex 8aCl.](image-url)
3.4 Synthesis of 8bCl

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) chloride (0.150 g, 0.415 mmol, 2.0 eq.) and 6b (0.078 g, 0.207 mmol, 1.0 eq.) were used in the reaction. Yield: 0.178 g, 86%. Mp > 230 °C. 1H NMR (500 MHz, d_6-DMSO) δ 9.26 (s, 2H, Ha), 8.95 (dd, $J = 5.5$, 1.3 Hz, 2H, Hb), 8.34-8.20 (m, 4H, Hc and Hg), 7.63 (ddd, $J = 7.3$, 5.5, 1.8 Hz, 2H, Hf), 4.62 (t, $J = 7.3$ Hz, 4H, Hf), 2.00-1.92 (m, 4H, Hg), 1.44-1.36 (m, 4H, Hh). 13C NMR (125 MHz, d_6-DMSO) δ 197.60, 196.75, 189.55, 153.00, 148.72, 148.15, 140.64, 126.41, 125.69, 122.54, 51.46, 28.80, 24.99. ATR-IR: ν (cm$^{-1}$) 3138, 2938, 2022, 1894, 1652, 1617, 1580, 1456, 1426, 784, 479. HR-ESMS (DMF) $m/z = 951.0420$ [8bCl$-\text{Cl}^+$] (calc. for C$_{26}$H$_{22}$Cl$_2$N$_8$O$_6$Re$_2^+$ 951.0456). UV-vis (DMF) λ_{\max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.7 × 104), 290 (1.7 × 104), 275 (2.3 × 104). Anal. calcd. for C$_{26}$H$_{22}$Cl$_2$N$_8$O$_6$Re$_2$: C 31.68, H 2.25, N 11.37%; found: C 31.84, H 2.33, N 11.28%.

Figure S6: 1H NMR spectra (500 MHz, d_6-DMSO, 298 K) of rhenium complex 8bCl.
3.5 Synthesis of 8cCl

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) chloride (0.180 g, 0.497 mmol, 2.0 eq.) and 6c (0.100 g, 0.248 mmol) were used in the reaction. Yield: 0.210 g, 83%. Mp > 230 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.25 (s, 2H, H_e), 8.95 (d, J = 5.3 Hz, 2H, H_b), 8.32-8.23 (m, 4H, H_d and H_c), 7.63 (ddd, J = 7.3, 5.6, 2.2 Hz, 2H, H_b), 4.60 (t, J = 7.2 Hz, 4H, H_i), 1.94 (p, J = 6.9 Hz, 4H, H_g), 1.32-1.25 (m, 8H, H_h and H_i). 13C NMR (100 MHz, d_6-DMSO) δ 197.84, 196.99, 189.78, 153.23, 148.95, 148.37, 140.87, 126.64, 125.88, 122.76, 51.76, 29.24, 28.24, 25.72. ATR-IR: ν (cm$^{-1}$) 3128, 2921, 2024, 1983, 1978, 1652, 1615, 1580, 1467, 1453, 1427, 1363, 1331, 1272, 1156, 1094, 998, 974, 894, 781, 754, 492. HR-ESMS (DMF) m/z = 979.0707 [8cCl$-$Cl]$^+$ (calc. for C$_{28}$H$_{26}$Cl$_2$N$_8$O$_6$Re$_2$: 979.0770). UV-vis (DMF) λ_{max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.7 \times 104), 290 (2.0 \times 104), 275 (2.4 \times 104). Anal. calcd. for C$_{28}$H$_{26}$Cl$_2$N$_8$O$_6$Re$_2$: C 33.17, H 2.58, N 11.05%; found: C 33.30, H 2.78, N 11.01%.

Figure S7: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 8cCl.
3.6 Synthesis of 8d\textsubscript{Cl}

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) chloride (0.100 g, 0.276 mmol, 2.0 eq.) and 6d (0.064 g, 0.138 mmol, 1.0 eq.) were used in the reaction. Yield: 0.130 g, 87%. Mp > 190 °C. 1H NMR (400 MHz, \textit{d}_6-DMSO) \(\delta \): 9.27 (s, 2H, H\textsubscript{e}), 8.96 (d, \(J = 5.4 \) Hz, 2H, H\textsubscript{a}), 8.29-8.21 (m, 4H, H\textsubscript{d} and H\textsubscript{c}), 7.64 (ddd, \(J = 7.3, 5.6, 2.1 \) Hz, 2H, H\textsubscript{b}), 4.61 (t, \(J = 7.2 \) Hz, 4H, H\textsubscript{f}), 1.97-1.86 (m, 16H, H\textsubscript{h}-H\textsubscript{k}). 13C NMR (100 MHz, \textit{d}_6-DMSO) \(\delta \): 198.06, 197.18, 189.97, 153.43, 149.15, 148.56, 141.07, 126.83, 126.10, 122.96, 51.98, 29.46, 29.24, 29.17, 28.66, 26.01. ATR-IR: \(\nu \) (cm\(^{-1}\)) 3300, 3087, 2925, 2853, 2022, 1908, 1887, 1618, 1582, 1456, 1432, 1371, 1269, 1160, 1130, 1100, 1054, 998, 895, 781, 488. HR-ESMS (DMF) \(m/z = 1035.1404 \) [\(8\text{d}_{\text{Cl}}-\text{Cl}\]^+ (calc. for \(C_{32}H_{34}ClN_8O_6Re_2^+ \) 1035.1396)]. UV-vis (DMF) \(\lambda_{\text{max}}/\text{nm} \) (\(\varepsilon/L \text{ mol}^{-1} \text{ cm}^{-1} \)): 330 (0.9 \(\times \) 10\(^4\)), 290 (2.5 \(\times \) 10\(^4\)), 275 (3.0 \(\times \) 10\(^4\)). Anal. calcd. for \(C_{32}H_{34}Cl_2N_8O_6Re_2\cdot H_2O \): C 35.33, H 3.34, N 10.30%; found: C 35.09, H 3.24, N, 10.20%.

Figure S8: H NMR spectra (400 MHz, \textit{d}_6-DMSO, 298 K) of rhenium complex 8d\textsubscript{Cl}.
3.7 Synthesis of 8aBr

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) bromide (0.124 g, 0.304 mmol, 2.0 eq.) and 6a (0.060 g, 0.152 mmol, 1.0 eq.) were used in the reaction. Yield: 0.141 g, 85%. Mp > 230 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.30 (s, 2H, H_e), 8.97 (d, J = 5.5 Hz, 2H, H_a), 8.32-8.21 (m, 4H, H_d and H_c), 7.62 (ddd, J = 7.4, 5.4, 1.7 Hz, 2H, H_b), 7.53 (s, 4H, H_g), 5.94 (s, 4H, H_i). 13C NMR (100 MHz, d_6-DMSO) δ 197.06, 196.29, 188.89, 153.15, 148.59, 148.55, 140.55, 134.86, 129.15, 126.46, 126.11, 122.77, 54.29. ATR-IR: ν (cm$^{-1}$) 3108, 2927, 2852, 2621, 1887, 1616, 1582, 1454, 1423, 1271, 1122, 1052, 782, 752, 643, 533, 483. HR-ESMS (DMSO) $m/z = 1014.9601$ [8aBr$^-$Br]$^+$ (calc. for C$_{28}$H$_{18}$BrN$_8$O$_6$Re$_2$ 1014.9600). UV-vis (DMF) λ_{max}/nm (ε L mol$^{-1}$ cm$^{-1}$): 330 (0.5 × 104), 290 (1.8 × 104), 275 (2.3 × 104). Anal. calcd. for C$_{28}$H$_{18}$Br$_2$N$_8$O$_6$Re$_2$•0.5(CH$_3$CH$_2$OH): C 31.16, H 1.89, N 10.02%; found: C 31.55, H 1.61, N 10.38%.

Figure S9: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 8aBr.
3.8 Synthesis of 8bBr

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) bromide (0.195 g, 0.481 mmol, 2.0 eq.) and 6b (0.090 g, 0.240 mmol, 1.0 eq.) were used in the reaction. Yield: 0.254 g, 98%. Mp > 230 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.28 (s, 2H, H_e), 8.98 (d, J = 5.4 Hz, 2H, H_a), 8.27 (m, 4H, H_d and H_c), 7.63 (td, J = 5.8, 3.0 Hz, 2H, H_b), 4.63 (t, J = 7.2 Hz, 4H, H_l), 1.97 (p, J = 7.2 Hz, 4H, H_g), 1.46-1.34 (m, 4H, H_h). 13C NMR (100 MHz, d_6-DMSO) δ 197.13, 196.33, 188.94, 153.18, 148.73, 148.15, 140.58, 126.37, 125.74, 122.58, 51.47, 28.83, 24.95. ATR-IR: ν (cm$^{-1}$) 3136, 2928, 2856, 1897, 1859, 1617, 1457, 1365, 1271, 1157, 1123, 1052, 1000, 784, 629, 531, 479. HR-ESMS (DMF) m/z = 994.9914 [8bBr$^+_{n}$] (calc. for C$_{26}$H$_{22}$Br$_2$N$_8$O$_6$Re$_2$: 994.9931). UV-vis (DMF) λ_{max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.7 x 104), 290 (2.1 x 104), 275 (2.7 x 104). Anal. calcd. for C$_{26}$H$_{22}$Br$_2$N$_8$O$_6$Re$_2$: C 29.06, H 2.06, N 10.43%; found: C 29.12, H 2.07, N 10.23%.

Figure S10: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 8bBr.
3.9 Synthesis of 8c\(_{\text{Br}}\)

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) bromide (0.151 g, 0.373 mmol, 2.0 eq.) and 6c (0.075 g, 0.186 mmol, 1.0 eq.) were used in the reaction. Yield: 0.190 g, 92%. Mp > 230 °C. \(^1\)H NMR (400 MHz, \(d_6\)-DMSO) \(\delta\) 9.28 (s, 2H, \(H_e\)), 8.97 (d, \(J = 5.5\) Hz, 2H, \(H_a\)), 8.30-8.24 (m, 4H, \(H_d\) and \(H_c\)), 7.63 (td, \(J = 5.5, 3.5\) Hz, 2H, \(H_b\)), 4.61 (t, \(J = 7.2\) Hz, 4H, \(H_i\)), 1.94 (p, \(J = 7.1\) Hz, 4H, \(H_h\)), 1.32 (m, 8H, \(H_h\) and \(H_i\)). \(^{13}\)C NMR (100 MHz, \(d_6\)-DMSO) \(\delta\) 197.14, 196.34, 188.94, 153.18, 148.73, 148.14, 140.58, 126.36, 125.68, 122.54, 51.54, 29.04, 28.00, 25.45. ATR-IR.: \(\nu\) (cm\(^{-1}\)) 3127, 2923, 2856, 2025, 1898, 1616, 1580, 1432, 1270, 1240, 1157, 1122, 997, 778, 642, 626, 532, 480. HR-ESMS (DMF) \(m/z = 1023.0288\) [8c\(_{\text{Br}}\)-Br]\(^+\) (calc. for \(C_{28}H_{26}BrN_8O_6Re_2\) \(1023.0226\)). UV-vis (DMF) \(\lambda_{\text{max}}/\text{nm} (\varepsilon/L\ \text{mol}^{-1} \ \text{cm}^{-1})\): 330 (0.6 \times 10^4), 290 (1.7 \times 10^4), 275 (2.3 \times 10^4). Anal. calcd. for \(C_{28}H_{26}Br_2N_8O_6Re_2\): C 30.50, H 2.38, N 10.16%; found: C 30.79, H 2.34, N 10.27%.

Figure S11: \(^1\)H NMR spectra (400 MHz, \(d_6\)-DMSO, 298 K) of rhenium complex 8c\(_{\text{Br}}\).
3.10 Synthesis of 8dBr

The complex was prepared by the general procedure described above. Pentacarbonylrhenium(I) bromide (0.354 g, 0.872 mmol, 2.0 eq) and ligand 6d (0.200 g, 0.436 mmol, 1.0 eq.) were used in the reaction. Yield: 0.480 g, 95%. Mp 218-220 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 9.28 (s, 2H, H$_e$), 8.97 (d, J = 5.5 Hz, 2H, H$_a$), 8.32-8.25 (m, 4H, H$_d$ and H$_c$), 7.63 (td, J = 5.5, 3.5 Hz, 2H, H$_b$), 4.61 (t, J = 7.1 Hz, 4H, H$_l$), 1.91 (p, J = 6.9 Hz, 4H, H$_g$), 1.32-1.19 (m, 16H, H$_h$–H$_k$). 13C NMR (100 MHz, d$_6$-DMSO) δ 197.15, 196.34, 188.93, 153.18, 148.74, 148.13, 140.58, 126.37, 125.70, 122.54, 51.57, 29.06, 28.81, 28.75, 28.22, 25.55. ATR-IR: ν (cm$^{-1}$) 3088, 2899, 2850, 2020, 1910, 1889, 1618, 1583, 1463, 1432, 1369, 780, 484. HR-ESMS (methanol) m/z = 1079.1021 [8d$_{Br}$–Br]$^+$ (calc. for C$_{32}$H$_{34}$Br$_2$N$_8$O$_6$Re$_2^+$ 1079.0871). UV-vis (DMF) λ_{max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.8 \times 104), 290 (2.3 \times 104), 275 (2.9 \times 104). Anal. calcd. for C$_{32}$H$_{34}$Br$_2$N$_8$O$_6$Re$_2$: C 33.17, H 2.96, N 9.67%; found: C 32.93, H 2.87, N 9.48%.

Figure S12: 1H NMR spectra (400 MHz, d$_6$-DMSO, 298 K) of rhenium complex 8d$_{Br}$.
4 General procedure for the synthesis of the cationic rhenium(I) complexes

One of the neutral mono- or di-rhenium bromide complexes and silver triflate (1.25 eq. or 2.5 eq.) were dissolved in dry CH$_2$Cl$_2$ (10 mL) and stirred at room temperature in the absence of light, for 12 hours. The reaction mixture was filtered through cotton wool and the solvent volume was removed under reduced pressure. The resultant golden yellow oil was re-dissolved in dry THF (8 mL), 4-dimethylaminopyridine (1 eq. or 2 eq.) was then added and the mixture was irradiated in a CEM microwave reactor at 100 °C (200 W, 200 PSI) for 1 hour. Removal of the solvent under reduced pressure and subsequent purification by silica gel column chromatography (10% MeOH in CH$_2$Cl$_2$), followed by recrystallization afforded the complexes as pale yellow solids.
4.1 Synthesis of 7aDMAP

The complex was prepared by the general procedure described above. 5aBr (0.054 g, 0.091 mmol, 1 eq.), silver triflate (0.035 g, 0.136 mmol, 1.5 eq.) and 4-dimethylaminopyridine (0.011 g, 0.091 mmol, 1 eq.) were used in the reaction. Purification via column chromatography, followed by recrystallization from acetonitrile and diisopropyl ether led to the isolation of the product as a pale yellow solid. Crystals suitable for X-ray crystallographic analysis were obtained by vapour diffusion of diisopropyl ether into an acetonitrile solution of the complex.

Yield: 0.055 g, 78%. Mp 220-222 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.28 (s, 1H, H_a), 9.25 (d, $J = 5.5$ Hz, 1H, H_b), 8.34 (td, $J = 7.8$, 1.4 Hz, 1H, H_c), 8.26 (d, $J = 7.9$ Hz, 1H, H_d), 7.77 (ddd, $J = 7.3$, 5.5, 1.4 Hz, 1H, H_e), 7.64-7.57 (m, 2H, H_j), 7.51-7.41 (m, 5H, H_{g-h}), 6.45-6.40 (m, 2H, H_k), 6.01-5.86 (m, 2H, H_l). 13C NMR (125 MHz, d_6-DMSO) δ 195.93, 195.08, 192.09, 154.15, 153.92, 149.86, 148.92, 148.32, 141.65, 134.13, 129.14, 128.97, 128.48, 127.56, 126.79, 123.29, 108.16, 55.19, 38.69. ATR-IR: ν (cm$^{-1}$) 3127, 2927, 2848, 2025, 1902, 1617, 1580, 1563, 1467, 1396, 1271, 1157, 1122, 1029, 899, 778, 735, 627, 532, 480. HR-ESMS (DMF) $m/z = 629.1267$ [7aDMAP]$^+$ (calc. for $C_{24}H_{22}F_3N_6O_3Re^+$ 629.1306). UV-vis (DMF) λ_{max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.1 \times 104), 290 (1.2 \times 104), 275 (1.4 \times 104). Anal. calcd. for $C_{25}H_{22}F_3N_6O_6ReS$: C 38.61, H 2.85, N 10.81%; found: C 38.87, H 2.79, N 10.84%.

Figure S13: Partial 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 7aDMAP.
Figure S14: Partial stacked 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of a) ligand 5a, rhenium complexes b) 7aCl, c) 7aBr and d) 7aDMAP.

4.2 Synthesis of 7bDMAP

The complex was prepared by the general procedure described above. 7bBr (0.050 g, 0.082 mmol, 1 eq.), silver triflate (0.032 g, 0.123 mmol, 1.5 eq.) and 4-dimethylaminopyridine (0.010 g, 0.082 mmol, 1 eq.) were used in the reaction. Purification via column chromatography, followed by recrystallization from dichloromethane and diethyl ether led to the isolation of the product as a pale yellow solid. Yield: 0.048, 73%. Mp 146-148 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.31 (s, 1H, Hg), 9.26 (d, J = 5.5 Hz, 1H, Ha), 8.37 (td, J = 7.8, 1.4 Hz, 1H, Hj), 8.24 (d, J = 7.9 Hz, 1H, Hq), 7.78 (ddd, J = 7.3, 5.5, 1.3 Hz, 1H, Hb), 7.69-7.61 (m, 2H, Hn), 6.53-6.45 (m, 2H, Ho), 4.68 (td, J = 7.0, 2.1 Hz, 2H, Hf), 2.91 (s, 6H, Hp), 2.15 (p, J = 6.1, 4.8 Hz, 2H, Hg), 1.43-1.11 (m, 10H, Hh-Hl), 0.89-0.74 (m, 3H, Hm). 13C NMR (125 MHz, d_6-DMSO) δ 195.95, 195.18, 192.07, 154.20, 153.95, 149.95, 148.53, 148.45, 141.71, 127.52, 126.67, 123.05, 108.23, 52.02, 38.66, 31.09, 28.97, 28.46, 28.16, 25.50, 22.02, 13.90. ATR-IR: ν (cm$^{-1}$) 3082, 2928,
2852, 2025, 1915, 1628, 1545, 1455, 1398, 1271, 1259, 1224, 1154, 1021, 815, 785, 757, 644, 517, 482. HR-ESMS (MeOH) \(m/z = 651.2125 \text{ [7bDMAP]}^+ \text{ (calc. for } C_{25}H_{32}N_6O_3Re^+ \text{ 651.2089)}. \) UV-vis (DMF) \(\lambda_{\text{max}}/\text{nm (}\varepsilon/\text{L mol}^{-1} \text{ cm}^{-1}) \): 330 (0.4 \times 10^4), 290 (3.7 \times 10^4), 275 (3.4 \times 10^4). \) Anal. calcd. for \(C_{26}H_{32}F_3N_6O_6ReS: C \text{ 39.04, } H \text{ 4.03, } N \text{ 10.51%; found: } C \text{ 38.95, } H \text{ 3.98, } N \text{ 10.27%.}

Figure S15: \(^1\text{H NMR spectra (400 MHz, } d_6\text{-DMSO, 298 K) of rhenium complex 7bDMAP.}**
4.3 Synthesis of 8aDMAP

The complex was prepared by the general procedure described above. 8aBr (0.070 g, 0.061 mmol, 1 eq.), silver triflate (0.040 g, 0.153 mmol, 2.5 eq.) and 4-dimethylaminopyridine (0.015 g, 0.123 mmol, 2 eq.) were used in the reaction. Purification via column chromatography, followed by recrystallization from acetonitrile and diisopropyl ether led to the isolation of the product as a pale yellow solid. Crystals suitable for X-ray crystallographic analysis were obtained by vapour diffusion of diisopropyl ether into an acetonitrile solution of the complex. Yield: 0.050 g, 53%. Mp > 230 °C. 1H NMR (400 MHz, d$_6$-DMSO) δ 9.31 (s, 2H, H$_e$), 9.25 (d, J = 5.6 Hz, 2H, H$_f$), 8.35 (t, J = 7.8 Hz, 2H, H$_d$), 8.26 (d, J = 7.9 Hz, 2H, H$_d$), 7.78 (dd, J = 7.8, 5.9 Hz, 2H, H$_d$), 7.55 (d, J = 12.0 Hz, 2H, H$_g$), 6.47-6.41 (m, 4H, H$_b$), 5.99 (s, 4H, H$_b$), 2.89 (s, 12H, H$_j$). 13C NMR (125 MHz, d$_6$-DMSO) δ 195.86, 195.12, 192.05, 154.16, 154.00, 149.94, 148.87, 148.28, 141.72, 134.85, 129.14, 127.65, 126.98, 123.27, 108.19, 54.72, 38.70. ATR-IR: v (cm$^{-1}$) 3105, 2960, 2027, 1901, 1542, 1212, 1152, 1028, 949, 908, 818, 782, 754, 635, 572, 481. HR-ESMS (MeOH) m/z = 528.0667 [8aDMAP–DMAP]$^{2+}$ (calc. for C$_{35}$H$_{28}$N$_{10}$O$_6$Re$_2^2+$.528.0635). UV-vis (DMF) λ_{max}/nm (ε/L cm$^{-1}$): 330 (0.6 \times 104), 290 (6.8 \times 104), 275 (6.5 \times 104). Anal. calcd. for C$_{44}$H$_{38}$F$_6$N$_{12}$O$_{12}$Re$_2$S$_2$•H$_2$O: C 36.01, H 3.09, N 10.95%; found: C 35.64, H 2.99, N 10.56%.

Figure S16: Partial 1H NMR spectra (400 MHz, d$_6$-DMSO, 298 K) of rhenium complex 8aDMAP.
Figure S17: Partial stacked 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of a) ligand 6a, rhenium complexes b) 8aCl, c) 8aBr and d) 8aDMAP.
4.4 Synthesis of $8b_{\text{DMAP}}$

The complex was prepared by the general procedure described above. $8b_{\text{Br}}$ (0.070 g, 0.065 mmol, 1 eq.), silver triflate (0.042 g, 0.163 mmol, 2.5 eq.) and 4-dimethylaminopyridine (0.016 g, 0.130 mmol, 2 eq.) were used in the reaction. Purification via column chromatography, followed by recrystallization from dichloromethane and diethyl ether led to the isolation of the product as a pale yellow solid. Yield: 0.050 g, 52%. Mp 133-135 °C. 1H NMR (400 MHz, d_6-DMSO) δ 9.30 (s, 2H, H_a), 9.26 (d, J = 5.5 Hz, 2H, H_b), 8.37 (td, J = 7.9, 1.4 Hz, 2H, H_c), 8.24 (d, J = 7.9 Hz, 2H, H_d), 7.78 (ddd, J = 7.3, 5.5, 1.4 Hz, 2H, H_e), 7.67-7.62 (m, 4H, H_f), 6.50-6.46 (m, 4H, H_g), 4.69 (t, J = 7.1 Hz, 4H, H_h), 2.88 (s, 12H, H_i), 2.00 (p, J = 7.2 Hz, 4H, H_j). 13C NMR (125 MHz, d_6-DMSO) δ 195.91, 195.19, 192.05, 154.18, 154.00, 149.97, 148.53, 148.41, 141.76, 127.54, 126.67, 123.05, 108.24, 51.92, 38.66, 28.87, 24.95. ATR-IR: ν (cm$^{-1}$) 3113, 2917, 2852, 2025, 1894, 1617, 1542, 1457, 1395, 1255, 1222, 1153, 1019, 948, 908, 816, 785, 754, 636, 572, 481. HR-ESMS (MeOH) m/z = 518.0802 [$8b_{\text{DMAP}}$-DMAP]$^{2+}$ (calc. for C$_{33}$H$_{32}$F$_6$N$_{12}$O$_6$Re$_2$ $^{2+}$ 518.0792). UV-vis (DMF) λ_{max}/nm (ε/L mol$^{-1}$ cm$^{-1}$): 330 (0.7 × 104), 290 (6.9 × 104), 275 (6.4 × 104). Anal. calcd. for C$_{42}$H$_{42}$F$_6$N$_{12}$O$_6$Re$_2$: C 34.61, H 2.90, N 11.53%; found: C 34.90, H 2.78, N 11.43%.

Figure S18: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex $8b_{\text{DMAP}}$. 23
4.5 Synthesis of 8cDMAP

The complex was prepared by the general procedure described above. 8cBr (0.040 g, 0.038 mmol, 1 eq.), silver triflate (0.025 g, 0.094 mmol, 2.5 eq.) and 4-dimethylaminopyridine (0.010 g, 0.075 mmol, 2 eq.) were used in the reaction. Purification via column chromatography, followed by recrystallization from dichloromethane and diethyl ether led to the isolation of the product as a pale yellow solid. Yield: 0.025 g, 46%. Mp 87-89 °C. 1H NMR (500 MHz, d_6-DMSO) δ 9.30 (s, 2H, H_e), 9.26 (d, J = 5.6 Hz, 2H, H_d), 8.37 (td, J = 7.8, 1.5 Hz, 2H, H_c), 8.24 (d, J = 7.9 Hz, 2H, H_b), 7.78 (ddd, J = 7.3, 5.5, 1.4 Hz, 2H, H_b), 7.66-7.61 (m, 4H, H_j), 6.51- 6.46 (m, 4H, H_k), 4.67 (t, J = 7.1 Hz, 4H, H_f), 2.90 (s, 12H, H_l), 2.01-1.90 (m, 8H, H_j and H_h). 13C NMR (125 MHz, d_6-DMSO) δ 195.90, 195.20, 192.07, 154.19, 153.98, 149.95, 148.52, 148.41, 141.75, 127.55, 126.65, 123.06, 108.22, 51.98, 38.67, 29.02, 28.16, 25.56. ATR-IR: ν (cm⁻¹) 3108, 2928, 2861, 2027, 1902, 1623, 1543, 1457, 1395, 1258, 1223, 1153, 1019, 812, 783, 755, 636, 573, 516, 484. HR-ESMS (MeOH) m/z = 532.0911 [8cDMAP−DMAP]^{2+} (calc. for C_{35}H_{36}N_{10}O_{6}Re_{2}^{2+} 532.0948). UV-vis (DMF) λ_{max}/nm (ε/L mol⁻¹ cm⁻¹): 330 (0.6 × 10⁴), 290 (5.4 × 10⁴), 275 (5.2 × 10⁴). Anal. calcd. for C_{44}H_{46}F_{6}N_{12}O_{12}Re_{2}S_{2}•1.5H_{2}O•0.5 (CH_{3}CH_{2}OCH_{2}CH_{3}): C 35.66, H 3.51, N 10.85%; found: C 35.85, H 3.42, N 10.49%.

Figure S19: 1H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complex 8cDMAP.
4.6 Synthesis of 8d_{DMAP}

The complex was prepared by the general procedure described above. 8d_{Br} (0.095 g, 0.082 mmol, 1 eq.), silver triflate (0.053 g, 0.205 mmol, 2.5 eq.) and 4-dimethylaminopyridine (0.020 g, 0.164 mmol, 2 eq.) were used in the reaction. Purification via column chromatography, followed by recrystallization from dichloromethane and hexane led to the isolation of the product as a pale yellow solid. Yield: 0.060 g, 47%. Mp 78-80 °C. ^1^H NMR (400 MHz, d_6-DMSO) δ 9.32 (s, 2H, H_a), 9.26 (d, J = 5.6 Hz, 2H, H_b), 8.41-8.31 (m, 2H, H_c), 8.25 (d, J = 7.9 Hz, 2H, H_d), 7.78 (dd, J = 7.5, 5.8 Hz, 2H, H_e), 7.67-7.60 (m, 4H, H_f), 6.51-6.46 (m, 4H, H_g), 4.67 (t, J = 7.0 Hz, 4H, H_h), 2.90 (s, 12H, H_i), 1.94 (p, J = 7.1 Hz, 4H, H_j), 1.25-1.17 (m, 16H, H_k-h). ^13^C NMR (100 MHz, d_6-DMSO) δ 195.95, 195.19, 192.05, 154.20, 153.96, 149.96, 148.53, 148.45, 141.75, 127.53, 126.68, 123.08, 108.24, 52.02, 38.67, 29.00, 28.92, 28.89, 28.26, 25.55. ATR-IR: ν (cm^{-1}) 3112, 2926, 2854, 2024, 1980, 1897, 1616, 1543, 1445, 1394, 1254, 1222, 1150, 1064, 1028, 781, 754, 635, 572, 515, 481. HR-ESMS (MeOH) m/z = 621.1709 [8d_{DMAP}]^{2+} (calc. for C_{46}H_{54}N_{12}O_{6}Re_{2}^{2+} 621.1683). UV-vis (DMF) λ_{max}/nm (ε/L mol^{-1} cm^{-1}): 330 (0.7 × 10^{4}), 290 (7.0 × 10^{4}), 275 (6.4 × 10^{4}). Anal. calcd. for C_{48}H_{54}F_{6}N_{12}O_{12}Re_{2}S_{2}•4.5CH_{2}Cl_{2}: C 37.31, H 3.91, N 10.34%; found: C 37.21, H 3.89, N 10.19%.

Figure S20: ^1^H NMR spectra (400 MHz, d_6-DMSO, 298 K) of rhenium complexes 8d_{DMAP}.
5 Kinetic stability of the rhenium(I) complexes versus histidine

Histidine competition experiment for the rhenium complex 8aCl

Figure S21: Partial stacked 1H NMR spectra (500 MHz, d_6-DMSO, 313 K) of mixtures containing the rhenium complex 8aCl (1 eq.), DL-histidine hydrochloride monohydrate (6 eq.) and NaHCO$_3$ (6 eq.).
Histidine competition experiment for the rhenium complex 8c\textsubscript{DMAP}

\[
\text{[Re(CO)_3(DMAP)(6c)]}^+ + (\text{OTf})^-
\]

\[m/z \ 795.2577\]

\[\text{L = } \begin{array}{c}
\text{N} \\
\text{N}
\end{array}\]

\[\text{OC}^+ \quad \text{CO}^-
\]

\[\text{N}=\text{N}
\]

\[\text{N}=\text{N}
\]

Figure S22: Chemical structure of the mono-cationic rhenium complex \([\text{Re(CO)}_3(\text{DMAP})(6c)]^+\) and HR-ES mass spectrum of reaction mixture containing 8c\textsubscript{DMAP} (1 eq.), DL-histidine hydrochloride monohydrate (6 eq.) and NaHCO\textsubscript{3} (6 eq.).
Table 6.1. SQUEEZE results for 8aDMAP

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platon squeeze void number</td>
<td>1</td>
</tr>
<tr>
<td>Platon squeeze void average x</td>
<td>-0.004</td>
</tr>
<tr>
<td>Platon squeeze void average y</td>
<td>0.012</td>
</tr>
<tr>
<td>Platon squeeze void average z</td>
<td>-0.001</td>
</tr>
<tr>
<td>Platon squeeze void volume</td>
<td>624</td>
</tr>
<tr>
<td>Platon squeeze void count electrons</td>
<td>241</td>
</tr>
<tr>
<td>Platon squeeze details</td>
<td>Disordered acetonitrile, diisopropyl ether and triflate molecules and triflate molecules</td>
</tr>
</tbody>
</table>
Table 6.2. X-ray crystallographic data collected in this work

<table>
<thead>
<tr>
<th>compound</th>
<th>$7a_{Br}$</th>
<th>$8a_{Cl}$</th>
<th>$7a_{DMAP}$</th>
<th>$8a_{DMAP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC number</td>
<td>1402800</td>
<td>1402802</td>
<td>1402801</td>
<td>1402803</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>$C_{17}H_{12}BrN_{4}O_{3}Re$</td>
<td>$C_{34}H_{32}Cl_{2}N_{10}O_{8}Re_{2}$</td>
<td>$C_{25}H_{22}F_{3}N_{6}O_{6}ReS$</td>
<td>$C_{42}H_{38}N_{12}O_{6}Re_{2}$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>586.42</td>
<td>1152.00</td>
<td>777.75</td>
<td>1179.24</td>
</tr>
<tr>
<td>Temperature, K</td>
<td>94.0(2)</td>
<td>90(2)</td>
<td>90(2)</td>
<td>100.0(1)</td>
</tr>
<tr>
<td>Wavelength, Å</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>1.54180</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$Pbcn$</td>
<td>$Pbca$</td>
<td>P_{1}</td>
<td>P_{1}</td>
</tr>
<tr>
<td>a, Å</td>
<td>10.7506(10)</td>
<td>17.4365(10)</td>
<td>8.4002(11)</td>
<td>10.5925(4)</td>
</tr>
<tr>
<td>b, Å</td>
<td>10.3184(9)</td>
<td>11.3085(6)</td>
<td>11.0403(15)</td>
<td>11.4645(5)</td>
</tr>
<tr>
<td>c, Å</td>
<td>32.139(3)</td>
<td>20.1644(13)</td>
<td>14.7650(17)</td>
<td>12.9089(4)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>90</td>
<td>86.022(6)</td>
<td>89.794(3)</td>
</tr>
<tr>
<td>β, deg</td>
<td>90</td>
<td>90</td>
<td>86.798(6)</td>
<td>82.874(3)</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
<td>90</td>
<td>87.350(6)</td>
<td>82.860(4)</td>
</tr>
<tr>
<td>Volume, Å3</td>
<td>3565.2(6)</td>
<td>3976.0(4)</td>
<td>1362.7(3)</td>
<td>1543.34(10)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D_{calcd}, Mg/m3</td>
<td>2.185</td>
<td>1.931</td>
<td>1.913</td>
<td>1.269</td>
</tr>
<tr>
<td>μ, mm$^{-1}$</td>
<td>9.083</td>
<td>6.283</td>
<td>4.609</td>
<td>7.911</td>
</tr>
<tr>
<td>Final R indices ($I>2\sigma(I)$)</td>
<td>$R_1 = 0.0539$</td>
<td>$R_1 = 0.0314$</td>
<td>$R_1 = 0.0443$</td>
<td>$R_1 = 0.0693$</td>
</tr>
<tr>
<td></td>
<td>$wR_2 = 0.1087$</td>
<td>$wR_2 = 0.0705$</td>
<td>$wR_2 = 0.0817$</td>
<td>$wR_2 = 0.2121$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0692$</td>
<td>$R_1 = 0.0332$</td>
<td>$R_1 = 0.0443$</td>
<td>$R_1 = 0.0745$</td>
</tr>
<tr>
<td></td>
<td>$wR_2 = 0.1200$</td>
<td>$wR_2 = 0.0717$</td>
<td>$wR_2 = 0.0817$</td>
<td>$wR_2 = 0.2237$</td>
</tr>
</tbody>
</table>
7 UV-vis spectra of the rhenium(I) complexes

Figure S23: Electronic absorption spectra (UV-vis, DMF, 10^{-5} M) of the neutral rhenium(I) bromide complexes.

Figure S24: Electronic absorption spectra (UV-vis, DMF, 10^{-5} M) of the cationic rhenium(I) complexes.
Figure S25: Spartan14⁴ molecular models of the syn and anti isomers of di-rhenium(I) complex 8a_{DMAP}.

8 Molecular models of stereoisomers of 8a_{DMAP} and 7a_{DMAP}

![Molecular models of stereoisomers of 8a_{DMAP} and 7a_{DMAP}](image-url)
Figure S26: Spartan14• molecular models of the Λ and Δ enantiomers of the mono-rhenium complex 7a_{DMAP}.

References

(1) Crowley, J. D.; Bandeen, P. H.; Hanton, L. R. Polyhedron 2010, 29, 70.
(3) Kim, T. Y.; Elliott, A. B. S.; Shaffer, K. J.; McAdam, C. J.; Gordon, K. C.; Crowley, J. D. Polyhedron 2013, 52, 1391.
(4) Spartan 14, Wavefunction Inc. Irvine, CA 92,612, USA 2014.