Supplementary Material

Charge Carrier Transfer in Ta3N5 Photoanodes Prepared by Different Methods for Solar Water Splitting

Mingxue Li,A,B,D Wenjun Luo,B,C Liheng Yang,B Xin Zhao,B and Zhigang Zou,B,D

ADepartment of Physics, China University of Mining and Technology, 221116, China.
BECO-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 210093, China.
CKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, China.
DCorresponding authors. Email: lmx_cumt@126.com, zgzou@nju.edu.cn
Experimental

Preparation of Ta\textsubscript{3}N\textsubscript{5} photoanodes

The electrophoresis deposition method: The Ta\textsubscript{2}O\textsubscript{5} powder was nitrided at 850 °C for 15 h under a flow of ammonia gas (500 mL min-1) to form Ta\textsubscript{3}N\textsubscript{5} powder. The Ta\textsubscript{3}N\textsubscript{5} powder was deposited on the Ta substrates to form Ta\textsubscript{3}N\textsubscript{5}/Ta films by electrophoresis deposition following previous method.[1] And then the Ta\textsubscript{3}N\textsubscript{5}/Ta dropped with TaCl\textsubscript{5} methanol solution (10mM, 10uL) for five times. Finally, the dropped Ta\textsubscript{3}N\textsubscript{5}/Ta was heated at 500 °C for 30 min under a flow of ammonia gas (500 mL min-1). The oxidation and nitridation of Ta foil method: Ta foils (1× 1.5× 0.02 cm3) were cleaned in ethanol and acetone. The Ta foils were oxidized at 610 °C in air for 30 min, and then were nitrided at 850 °C for 8 h under a flow of ammonia gas (500 mL min-1) to form Ta\textsubscript{3}N\textsubscript{5}/Ta films. An impregnation method was used for Co(OH)\textsubscript{x} loading on Ta\textsubscript{3}N\textsubscript{5}/Ta.[1] Firstly, NaOH was added into an aqueous solution containing Co2+ ions to fabricate the colloidal Co(OH)\textsubscript{x} solution. Secondly, the Ta\textsubscript{3}N\textsubscript{5}/Ta were immersed into the Co(OH)\textsubscript{x} colloidal solution for 1 h at room temperature, and then washed by distilled water and dried in air.

Characterization of Ta\textsubscript{3}N\textsubscript{5} photoanodes

The crystal structures of the Ta\textsubscript{3}N\textsubscript{5} photoanodes were measured by X-ray diffraction (XRD, Rigaku, Ultima III). The film thickness was measured by a Dektak Series 150 Surface Profiler. The morphology and film thickness of Ta\textsubscript{3}N\textsubscript{5} photoanodes were examined with a scanning electron microscope (SEM, Nova NanoSEM 230 FEI Co). The electrochemical impedance spectra (EIS) of the Ta\textsubscript{3}N\textsubscript{5} photoanodes were measured by an electrochemical analyzer (Solartron 1260 + 1287) with a 10 mV amplitude perturbation and frequencies between 0.1 Hz ~ 1 MHz. The Co/Ta ratios of the samples were investigated by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250).

Photoelectrochemical and electrochemical measurement

Photoelectrochemical properties were measured in a three-electrode cell using an electrochemical analyzer (CHI-633C, Shanghai Chenhua). An aqueous solution of 1 M NaOH was employed as electrolyte. A 500W Xenon lamp and an AM1.5G sunlight simulator (100 mW cm-2, oriel 92251A-1000) were used as light sources. A Ta\textsubscript{3}N\textsubscript{5}/Ta, a Pt foil and a saturated calomel electrode (SCE) were used as working electrode, counter electrode and reference electrode, respectively. The potentials of the working electrode were obtained by the formula

\[V_{RHE} = V_{SCE} + 0.242V + 0.059 \times \text{pH}, \]

(1)

Where \(V_{RHE} \) was the potential vs. a reversible hydrogen potential, \(V_{SCE} \) was the potential vs. SCE electrode, and pH was the pH value of electrolyte.

The incident photon-to-current efficiency (IPCE) was determined under irradiation light of different wavelength generated by monochromatic filters. The APCE was calculated as follow:

\[\text{APCE} = 1240 \times \frac{I_{ph}}{P \times \lambda \times \eta_{abs}}, \]

(2)

Where \(I_{ph} \) is the photocurrent density (uA cm-2), \(P \) and \(\lambda \) are the incident light
intensity (uW cm$^{-2}$) and wavelength (nm), respectively, and η_{abs} is the light harvesting efficiency. The incident light intensity was measured by a photometer (Newport, 840-C, USA).

Reference

Figure S1. XRD patterns of EPD Ta$_3$N$_5$ and ONTF Ta$_3$N$_5$.

Figure S2. The circuit to simulate the EIS data

Figure S3. (a) The photocurrent of Ta$_3$N$_5$ in 1M NaOH aqueous solution. (b) The photocurrent of Ta$_3$N$_5$ in 1M NaOH+H$_2$O$_2$ aqueous solution.
Figure S4. (a) The XRD data of ONTF Ta$_3$N$_5$ and polished ONTF Ta$_3$N$_5$. (b) The photocurrent of EPD Ta$_3$N$_5$ with Ta foil and polished ONTF Ta$_3$N$_5$ as substrates.

Figure S5. SEM images of Co(OH)$_x$ loaded Ta$_3$N$_5$ photoanodes prepared by EPD (a) and ONTF (b) methods. Maps of the Co signal intensity of Ta$_3$N$_5$ photoanodes prepared by EPD (c) and ONTF (d) methods after Co(OH)$_x$ loading.