SUPPLEMENTARY MATERIAL

Palladacycle Promoted Asymmetric P-H Addition of Diphenylphosphine to 3-Benzylidene-2,4-pentadione: Catalyst inactivation via unexpected P, O chelation

In memory of Emeritus Professor Brice Bosnich for his contributions to the field of organophosphorus chemistry and in catalysis. LPH is grateful to Professor Bosnich for his guidance during his stay at the University of Toronto and the University of Chicago

Xi-Rui Li, ${ }^{A}$ Renta Jonathan Chew, ${ }^{A}$ Yongxin $L i{ }^{A}$ and Pak-Hing
Leung $^{\text {A,B }}$

[^0]
Table of Contents

1. Characterization of Reaction Products S3
2. NMR spectra S4
3. Chiral HPLC Analyses of products under different S10
Conditions
4. Single Crystal X-ray Diffraction Data S14

1. Characterization of Reaction Products

9
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.64 .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) δ 6.68-7.55 (m, $21 \mathrm{H}), 5.17-5.22(\mathrm{~d}, \mathrm{~J}=20.1 \mathrm{~Hz}, 1 \mathrm{H})$). 4.48-4.52 (m, 1H), $3.00-3.01$ (d, J = 3.3 Hz, 3H), 2.86 (s, 3H), 2.36 (s, 3H), 2.24 (s, 3H), 1.94-1.95 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 123.98-134.60,70.96,50.90,45.18,41.18,30.76,30.07,29.79,24.81$, 23.48. HRMS of 9: Calculated for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{PPd}=678.1753$, found $=678.1729$.

11
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}) $\delta 50.64 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.14-7.17 (m, 15H), 5.19-5.24 (dd, J = 13.1, $10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94-5.00 (dd, J = 10.8, $9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (s, $3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.92-127.83,70.21,46.70,31.42$, 29.02. HRMS of 11: Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{PS}=407.1235$, found $=407.1231$.

Au-phosphine adduct

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 49.65 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.18-8.04 (m, 15 H), $4.90-5.01(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 128.46-135.72, 72.59, 43.94, 31.22, 28.79.

2. NMR Spectra

Figure 1A. ${ }^{31} \mathrm{P}$ NMR of 9.

9

Figure 1B. ${ }^{1} \mathrm{H}$ NMR of 9 .

Figure 1C. ${ }^{13} \mathrm{C}$ NMR of 9.

9

Figure 1D. HRMS of 9.

Figure 2A. ${ }^{31}$ P NMR of 11 .

11

Figure 2B. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}$.

11

Figure 1C. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1 .}$

Figure 1D. HRMS of 11.

Figure 3A. ${ }^{31} \mathrm{P}$ NMR of gold(I)-phosphine adduct.

Figure 3B. ${ }^{1} \mathrm{H}$ NMR of $\operatorname{gold}(\mathbf{I})$-phosphine adduct.

Au-phosphine adduct

Figure 3C. ${ }^{13} \mathrm{C}$ NMR of gold(I)-phosphine adduct.

3. Chiral HPLC Analyses of products under different conditions

Table 1, entry 1 (Tetrahydrofuran as solvent at room temperature)

Table 1, entry 2 (Dichloromethane as solvent at room temperature)

Table 1, entry 3 (Acetone as solvent at room temperature)

Table 1, entry 4 (Chloroform as solvent at room temperature)

4. Single Crystal X-ray Diffraction Data

Figure 7: Molecular structure and absolute stereochemistry of chelate 9 with 50% thermal ellipsoids shown. Hydrogen atoms except those on the chiral centre are omitted for clarity. CCDC 1424966 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal Structure Report

A yellow block-like specimen of $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{PPd}$, approximate dimensions $0.180 \mathrm{~mm} \times 0.400$ $\mathrm{mm} \times 0.420 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 0.24 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 60896 reflections to a maximum θ angle of $33.78^{\circ}(0.64$ $\AA \AA$ resolution), of which 25236 were independent (average redundancy 2.413, completeness $=$ $\left.99.6 \%, \mathrm{R}_{\text {int }}=10.73 \%, \mathrm{R}_{\text {sig }}=14.78 \%\right)$ and $18985(75.23 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\mathrm{a}=11.8563(8) \AA, \mathrm{b}=15.4239(10) \AA, \mathrm{c}=17.5713(12) \AA, \beta=96.314(2)^{\circ}$, volume $=3193.8(4) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 5975 reflections above $20 \sigma(\mathrm{I})$ with $5.360^{\circ}<2 \theta<50.34^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.798 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7670 and 0.8900 .

The final anisotropic full-matrix least-squares refinement on F^{2} with 924 variables converged at R1 $=6.50 \%$, for the observed data and $\mathrm{wR} 2=14.22 \%$ for all data. The goodness-of-fit was 0.989. The largest peak in the final difference electron density synthesis was $1.476 \mathrm{e}^{-} / \AA^{3}$ and the
largest hole was $-1.282 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.139 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.410 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1400 \mathrm{e}^{-}$.

Table 1. Sample and crystal data for leung872s.

Identification code	leung872s	
Chemical formula	$\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{PPd}$	
Formula weight	$678.06 \mathrm{~g} / \mathrm{mol}$	
Temperature	$103(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	0.180 x 0.400 x 0.420 mm	
Crystal habit	yellow block	
Crystal system	monoclinic	
Space group	P 1211	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=11.8563(8) \AA$	$\beta=96.314(2)^{\circ}$
	$\mathrm{b}=15.4239(10) \AA$	
	$\mathrm{c}=17.5713(12) \AA$	$\gamma=90^{\circ}$
Volume	$3193.8(4) \AA^{3}$	
Z	4	
Density (calculated)	$1.410 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.666 \mathrm{~mm}^{-1}$	
F(000)	1400	

Table 2. Data collection and structure refinement for leung872s.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
$\Delta / \sigma_{\text {max }}$
1.98 to 33.78°
$-18<=\mathrm{h}<=18,-24<=\mathrm{k}<=24,-26<=\mathrm{l}<=27$
60896
25236 [R(int) $=0.1073]$
99.6\%
multi-scan
0.8900 and 0.7670

Full-matrix least-squares on F^{2}
SHELXL-2014/6 (Sheldrick, 2014)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
25236 / 806 / 924
0.989
0.001

	18985 Final R indices data; $\quad \mathrm{R} 1=0.0650, \mathrm{wR} 2=0.1249$ $\mathrm{I}>2 \sigma(\mathrm{I})$
all data $\mathrm{R} 1=0.0942, \mathrm{wR} 2=0.1422$	
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$	
Absolute structure parameter	$-0.0(0)$
Largest diff. peak and hole	$1.476 \mathrm{and}^{-1.282} \mathrm{e}^{-3}$
R.M.S. deviation from mean	$0.139 \mathrm{e} \AA^{-3}$

Figure 8: Molecular structure of the gold(I)-phosphine adduct with 50% thermal ellipsoids. CCDC 1424965 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal Structure Report

A colorless block-like specimen of $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{AuClO}_{2} \mathrm{P}$, approximate dimensions 0.100 mm x $0.140 \mathrm{~mm} \times 0.200 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 0.63 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 44175 reflections to a maximum θ angle of $36.49^{\circ}(0.60 \AA$ resolution), of which 11409 were independent (average redundancy 3.872, completeness $=$ $\left.99.0 \%, \mathrm{R}_{\text {int }}=10.12 \%, \mathrm{R}_{\text {sig }}=9.98 \%\right)$ and $7841(68.73 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=9.9394(4) \AA, \underline{b}=11.1972(4) \AA, \underline{c}=11.8538(4) \AA, \alpha=116.6194(19)^{\circ}, \beta=$ $92.541(2)^{\circ}, \gamma=93.610(3)^{\circ}$, volume $=1173.18(8) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 4570 reflections above $20 \sigma(\mathrm{I})$ with $5.41^{\circ}<2 \theta<50.07^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.715 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.3580 and 0.5640 .

The final anisotropic full-matrix least-squares refinement on F^{2} with 264 variables converged at R1 $=4.60 \%$, for the observed data and $\mathrm{wR} 2=9.08 \%$ for all data. The goodness-of-fit was 0.971. The largest peak in the final difference electron density synthesis was $1.429 \mathrm{e}^{-} / \AA^{3}$ and
the largest hole was $-2.508 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.233 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.718 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 588 \mathrm{e}^{-}$.

Table 1. Sample and crystal data for leung881.

Identification code	leung881	
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{AuClO}_{2} \mathrm{P}$	
Formula weight	$606.81 \mathrm{~g} / \mathrm{mol}$	
Temperature	$103(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	0.100 x 0.140 x 0.200 mm	
Crystal habit	colorless block	
Crystal system	triclinic	
Space group	$\mathrm{P}-1$	
Unit cell dimensions	$\mathrm{a}=9.9394(4) \AA$	$\alpha=116.6194(19)^{\circ}$
	$\mathrm{b}=11.1972(4) \AA$	$\beta=92.541(2)^{\circ}$
	$\mathrm{c}=11.8538(4) \AA$	$\gamma=93.610(3)^{\circ}$
Volume	$1173.18(8) \AA^{3}$	
Z	2	
Density (calculated)	$1.718 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$6.468 \mathrm{~mm}^{-1}$	
F(000)	588	

Table 2. Data collection and structure refinement for leung881.
Theta range for data collection $\quad 2.71$ to 36.49°

Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections 99.0\%
Absorption correction

Max. and min. transmission
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
$\Delta / \sigma_{\text {max }}$
$-16<=\mathrm{h}<=16,-18<=\mathrm{k}<=18,-19<=\mathrm{l}<=19$
44175
11409 [$R($ int $)=0.1012$]
multi-scan
0.5640 and 0.3580

Full-matrix least-squares on F^{2}
SHELXL-2014/7 (Sheldrick, 2014)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
11409 / 0 / 264
0.971
0.002

[^0]: A Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
 ${ }^{\text {B }}$ Corresponding author. Email: pakhing@ntu.edu.sg

