10.1071/CH15577_AC ©CSIRO 2016 Australian Journal of Chemistry 69(5), 499-504

SUPPLEMENTARY MATERIAL

Palladacycle Promoted Asymmetric P-H Addition of Diphenylphosphine to 3-Benzylidene-2,4-pentadione: Catalyst inactivation via unexpected P,O chelation

In memory of Emeritus Professor Brice Bosnich for his contributions to the field of organophosphorus chemistry and in catalysis. LPH is grateful to Professor Bosnich for his guidance during his stay at the University of Toronto and the University of Chicago

Xi-Rui Li,^A Renta Jonathan Chew,^A Yongxin Li^A and Pak-Hing

Leung^{A,B}

^A Division of Chemistry and Biological Chemistry, School of Physical and Mathematical

Sciences, Nanyang Technological University, Singapore 637371, Singapore

^B Corresponding author. Email: pakhing@ntu.edu.sg

Table of Contents

1. Characterization of Reaction Products	S 3
2. NMR spectra	S 4
3. Chiral HPLC Analyses of products under different	S 10
Conditions	
4. Single Crystal X-ray Diffraction Data	S14

1. Characterization of Reaction Products

³¹P{¹H} NMR (162 MHz, CDCl₃) δ 50.64. ¹H NMR (400 MHz, CDCl₃) δ 6.68-7.55 (m, 21H), 5.17-5.22 (d, J = 20.1 Hz, 1H)). 4.48-4.52 (m, 1H), 3.00 - 3.01 (d, J = 3.3 Hz, 3H), 2.86 (s, 3H), 2.36 (s, 3H), 2.24 (s, 3H), 1.94-1.95 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 123.98-134.60, 70.96, 50.90, 45.18, 41.18, 30.76, 30.07, 29.79, 24.81, 23.48. HRMS of **9**: Calculated for C₃₈H₃₉NO₂PPd= 678.1753, found= 678.1729.

³¹P{¹H} NMR (202 MHz, CDCl₃) δ 50.64. ¹H NMR (500 MHz, CDCl₃) δ 8.14-7.17 (m, 15H), 5.19-5.24 (dd, J = 13.1, 10.9 Hz, 1H), 4.94-5.00 (dd, J = 10.8, 9.1 Hz, 1H), 2.04 (s, 3H), 1.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 131.92-127.83, 70.21, 46.70, 31.42, 29.02. HRMS of **11**: Calculated for C₂₄H₂₄O₂PS=407.1235, found=407.1231.

Au-phosphine adduct

³¹P{¹H} NMR (162 MHz, CDCl₃) δ 49.65. ¹H NMR (400 MHz, CDCl₃) δ 7.18-8.04 (m, 15H), 4.90-5.01 (m, 2H), 1.92 (s, 3H), 1.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 128.46-135.72, 72.59, 43.94, 31.22, 28.79.

2. NMR Spectra

Figure 1A. ³¹P NMR of 9.

Figure 1B. ¹H NMR of 9.

Figure 1D. HRMS of 9.

Figure 1C. ¹³C NMR of 11.

Figure 3A. ³¹P NMR of gold(I)-phosphine adduct.

Figure 3B. ¹H NMR of gold(I)-phosphine adduct.

004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	953 953 897	922 798
8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 7 7 7 7 7	
		11

Au-phosphine adduct

3. Chiral HPLC Analyses of products under different conditions

Table 1, entry 1 (Tetrahydrofuran as solvent at room temperature)

Table 1, entry 2 (Dichloromethane as solvent at room temperature)

Table 1, entry 3 (Acetone as solvent at room temperature)

Table 1, entry 4 (Chloroform as solvent at room temperature)

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
							I
1	15.143	BB	0.4623	1414.45032	44.80695	52.5470	
2	18.454	BB	0.4844	1277.33179	37.59084	47.4530	

4. Single Crystal X-ray Diffraction Data

Figure 7: Molecular structure and absolute stereochemistry of chelate **9** with 50% thermal ellipsoids shown. Hydrogen atoms except those on the chiral centre are omitted for clarity. CCDC 1424966 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>

Crystal Structure Report

A yellow block-like specimen of $C_{38}H_{38}NO_2PPd$, approximate dimensions 0.180 mm x 0.400 mm x 0.420 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 0.24 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 60896 reflections to a maximum θ angle of 33.78° (0.64 Å resolution), of which 25236 were independent (average redundancy 2.413, completeness = 99.6%, R_{int} = 10.73%, R_{sig} = 14.78%) and 18985 (75.23%) were greater than $2\sigma(F^2)$. The final cell constants of a = 11.8563(8) Å, b = 15.4239(10) Å, c = 17.5713(12) Å, β = 96.314(2)°, volume = 3193.8(4) Å³, are based upon the refinement of the XYZ-centroids of 5975 reflections above 20 $\sigma(I)$ with 5.360° < 2 θ < 50.34°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.798. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7670 and 0.8900.

The final anisotropic full-matrix least-squares refinement on F^2 with 924 variables converged at R1 = 6.50%, for the observed data and wR2 = 14.22% for all data. The goodness-of-fit was 0.989. The largest peak in the final difference electron density synthesis was 1.476 e⁻/Å³ and the

largest hole was -1.282 e⁻/Å³ with an RMS deviation of 0.139 e⁻/Å³. On the basis of the final model, the calculated density was 1.410 g/cm³ and F(000), 1400 e⁻.

 Table 1. Sample and crystal data for leung872s.

Identification code	leung872s	
Chemical formula	$C_{38}H_{38}NO_2PPd$	
Formula weight	678.06 g/mol	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal size	0.180 x 0.400 x 0.420 mm	
Crystal habit	yellow block	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 11.8563(8) Å	$\alpha = 90^{\circ}$
	b = 15.4239(10) Å	$\beta = 96.314(2)^{\circ}$
	c = 17.5713(12) Å	$\gamma = 90^{\circ}$
Volume	3193.8(4) Å ³	
Z	4	
Density (calculated)	1.410 g/cm^3	
Absorption coefficient	0.666 mm^{-1}	
F(000)	1400	

Table 2. Data collection and structure refinement for leung872s.

Theta range for data collection	1.98 to 33.78°
Index ranges	-18<=h<=18, -24<=k<=24, -26<=l<=27
Reflections collected	60896
Independent reflections	25236 [R(int) = 0.1073]
Coverage of independent reflections	99.6%
Absorption correction	multi-scan
Max. and min. transmission	0.8900 and 0.7670
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/6 (Sheldrick, 2014)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	25236 / 806 / 924
Goodness-of-fit on F ²	0.989
Δ / σ_{max}	0.001

	18985
Final R indices	data; $R1 = 0.0650, wR2 = 0.1249$
	$I \ge 2\sigma(I)$
	all data $R1 = 0.0942$, $wR2 = 0.1422$
Waighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})]$
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$
Absolute structure parameter	-0.0(0)
Largest diff. peak and hole	1.476 and -1.282 eÅ ⁻³
R.M.S. deviation from mean	0.139 eÅ ⁻³

Figure 8: Molecular structure of the gold(I)-phosphine adduct with 50% thermal ellipsoids. CCDC 1424965 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal Structure Report

A colorless block-like specimen of $C_{24}H_{23}AuClO_2P$, approximate dimensions 0.100 mm x 0.140 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 0.63 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 44175 reflections to a maximum θ angle of 36.49° (0.60 Å resolution), of which 11409 were independent (average redundancy 3.872, completeness = 99.0%, R_{int} = 10.12%, R_{sig} = 9.98%) and 7841 (68.73%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.9394(4) Å, <u>b</u> = 11.1972(4) Å, <u>c</u> = 11.8538(4) Å, α = 116.6194(19)°, β = 92.541(2)°, γ = 93.610(3)°, volume = 1173.18(8) Å³, are based upon the refinement of the XYZ-centroids of 4570 reflections above 20 $\sigma(I)$ with 5.41° < 2 θ < 50.07°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.715. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.3580 and 0.5640.

The final anisotropic full-matrix least-squares refinement on F^2 with 264 variables converged at R1 = 4.60%, for the observed data and wR2 = 9.08% for all data. The goodness-of-fit was 0.971. The largest peak in the final difference electron density synthesis was 1.429 e^{-/}Å³ and

the largest hole was -2.508 e⁻/Å³ with an RMS deviation of 0.233 e⁻/Å³. On the basis of the final model, the calculated density was 1.718 g/cm³ and F(000), 588 e⁻.

 Table 1. Sample and crystal data for leung881.

Identification code	leung881	
Chemical formula	$C_{24}H_{23}AuClO_2P$	
Formula weight	606.81 g/mol	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal size	0.100 x 0.140 x 0.200 mm	
Crystal habit	colorless block	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.9394(4) Å	$\alpha = 116.6194(19)^{\circ}$
	b = 11.1972(4) Å	$\beta = 92.541(2)^{\circ}$
	c = 11.8538(4) Å	$\gamma = 93.610(3)^{\circ}$
Volume	1173.18(8) Å ³	
Z	2	
Density (calculated)	1.718 g/cm ³	
Absorption coefficient	6.468 mm ⁻¹	
F(000)	588	

 Table 2. Data collection and structure refinement for leung881.

Theta range for data collection	2.71 to 36.49°
Index ranges	-16<=h<=16, -18<=k<=18, -19<=l<=19
Reflections collected	44175
Independent reflections	11409 [R(int) = 0.1012]
Coverage of independent reflections	99.0%
Absorption correction	multi-scan
Max. and min. transmission	0.5640 and 0.3580
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$
Data / restraints / parameters	11409 / 0 / 264
Goodness-of-fit on F ²	0.971
Δ / σ_{max}	0.002

	7841	
Final R indices	data; $R1 = 0.0460, wR2 = 0.0780$	
	$I \ge 2\sigma(I)$	
	all data $R1 = 0.0865$, $wR2 = 0.0908$	
Waighting schome	$w=1/[\sigma^2(F_o^2)+(0.0289P)^2]$	
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$	
Largest diff. peak and hole	1.429 and -2.508 eÅ ⁻³	
R.M.S. deviation from mean	0.233 eÅ ⁻³	