10.1071/CH15728_AC ©The Authors 2016 Australian Journal of Chemistry 2016, 69(8), 846-855

Supplementary Material

Structural Diversity and Properties of Six Zn^{II}/Cd^{II} Coordination

Polymers Based on a O-Bridged Semi-rigid Bis-pyridyl-bis-amide

and Different Dicarboxylates

Xiu-li Wang*, Xiao-Mei Wu, Guo-Cheng Liu, Nai-Li Chen, Hong-Yan Lin, Xiang Wang

Department of Chemistry, Bohai University, Jinzhou 121000, People's Republic of China

$C_{40}H_{42}N_4O_{13}Zn_2$			
Zn(1)-O(1)	1.928(5)	Zn(1)-O(4)A	1.937(4)
Zn(1)-O(8)	1.946(5)	Zn(1)-N(4)B	2.010(5)
Zn(2)A-O(3)A	1.894(5)	Zn(2)A-O(7)A	1.948(5)
Zn(2)A-O(5)A	1.962(5)	Zn(2)A-O(6)A	2.438(5)
Zn(2)A-N(1)A	2.052(5)	O(1)-Zn(1)-O(8)	100.7(2)
O(1)-Zn(1)-O(4)A	111.4(2)	O(1)-Zn(1)-N(4)B	128.1(2)
O(4)A-Zn(1)-O(8)	121.1(2)	O(8)-Zn(1)-N(4)B	95.7(2)
O(4)A-Zn(1)-N(4)B	100.7(2)	O(3)A-Zn(2)A-O(5)A	134.0(2)
O(3)A-Zn(2)A-O(7)A	111.5(2)	O(3)A-Zn(2)A-N(1)A	104.0(2)
O(7)A-Zn(2)A-O(5)A	100.1(2)	O(5)A-Zn(2)A-N(1)A	105.6(2)
O(7)A-Zn(2)A-N(1)A	95.0(2)	O(7)A-Zn(2)A-O(6)A	157.17(19)
O(3)A-Zn(2)A-O(6)A	89.44(19)	N(1)A-Zn(2)A-O(6)A	88.3(2)
O(5)A-Zn(2)A-O(6)A	57.44(17)		

Table S1. (a) Selected bond distances (Å) and angles (°) for complex 1

^{*} Corresponding author. Tel: +86-416-3400158, Fax: +86-416-3400158.

E-mail address: wangxiuli@bhu.edu.cn (X.L. Wang).

C ₃₃ H ₃₀ N ₄ O ₁₀ Zn			
Zn(1)-O(3)A	1.992(4)	Zn(1)-O(1)	1.987(4)
Zn(1)-O(2)	2.613(5)	Zn(1)-O(4)A	2.612(5)
Zn(1)-N(1)	2.025(4)	Zn(1)-N(4)B	2.038(4)
O(3)A-Zn(1)-O(1)	93.11(14)	O(3)A-Zn(1)-N(1)	109.30(16)
O(1)-Zn(1)-N(1)	107.55(17)	O(3)A-Zn(1)-N(4)B	111.09(16)
O(1)-Zn(1)-N(4)B	112.83(17)	N(1)-Zn(1)-N(4)B	111.09(16)

(b) Selected bond distances (Å) and angles (°) for complex 2

(c) Selected bond distances (Å) and angles (°) for complex ${\bf 3}$

C32H24N4O8Zn			
Zn(1)-O(1)	1.9014(15)	Zn(1)-O(3)A	1.9386(14)
Zn(1)-N(1)	2.0660(18)	Zn(1)-N(4)B	2.1219(19)
O(1)-Zn(1)-O(3)A	133.35(7)	O(1)-Zn(1)-N(1)	118.80(7)
O(3)A-Zn(1)-N(1)	98.05(7)	O(1)-Zn(1)-N(4)B	103.52(7)
O(3)A-Zn(1)-N(4)B	95.45(7)	N(1)-Zn(1)-N(4)B	101.25(7)

(d) Selected bond distances (Å) and angles (°) for complex ${\bf 4}$

$C_{40}H_{42}N_4O_{13}Cd_2$				
Cd(1)-O(1)	2.229(6)	Cd(1)-O(7)A	2.242(6)	
Cd(1)-O(5)	2.303(6)	Cd(1)-N(1)	2.340(7)	
Cd(1)-O(4)	2.389(6)	Cd(1)-O(6)	2.497(6)	
Cd(2)-O(8)A	1.999(7)	Cd(2)-O(2)	2.033(6)	
Cd(2)-N(4)B	2.099(7	Cd(2)-O(3)	2.112(6)	
Cd(2)-O(4)	2.483(8)	O(1)-Cd(1)-O(7)A	114.2(3)	
O(1)-Cd(1)-O(5)	151.2(2)	O(7)A-Cd(1)-O(5)	94.1(2)	
O(1)-Cd(1)-N(1)	93.6(2)	O(7)A-Cd(1)-N(1)	87.3(2)	
O(5)-Cd(1)-N(1)	93.0(2)	O(1)-Cd(1)-O(4)	89.1(2)	
O(7)A-Cd(1)-O(4)	89.3(2)	O(5)-Cd(1)-O(4)	85.8(2)	
N(1)-Cd(1)-O(4)	176.3(2)	O(1)-Cd(1)-O(6)	96.9(2)	
O(7)A-Cd(1)-O(6)	148.9(2)	O(5)-Cd(1)-O(6)	54.9(2)	
N(1)-Cd(1)-O(6)	91.0(3)	O(4)-Cd(1)-O(6)	91.3(3)	
O(8)A-Cd(2)-O(2)	118.6(3)	O(8)A-Cd(2)-N(4)B	98.3(3)	
O(2)-Cd(2)-N(4)B	100.8(3)	O(8)A-Cd(2)-O(3)	127.5(3)	
O(2)-Cd(2)-O(3)	107.6(3)	N(4)B-Cd(2)-O(3)	96.2(3)	
O(8)A-Cd(2)-O(4)	94.2(3)	O(2)-Cd(2)-O(4)	95.8(2)	
N(4)B-Cd(2)-O(4)	151.1(2)	O(3)-Cd(2)-O(4)	55.9(2)	

C33H28N4O9Cd			
Cd(1)-O(1)	2.253(2)	Cd(1)-O(3)A	2.282(2)
Cd(1)-O(7)B	2.496(2)	Cd(1)-O(2)	2.549(2)
Cd(1)-N(4)C	2.338(3)	Cd(1)-N(1)	2.352(3)
O(1)-Cd(1)-O(3)A	88.61(8)	O(1)-Cd(1)-N(4)C	135.72(9)
O(3)ACd(1)-N(4)C	131.64(8)	O(1)-Cd(1)-N(1)	96.13(9)
O(3)A-Cd(1)-N(1)	92.63(8)	N(4)C-Cd(1)-N(1	98.94(9)
O(1)-Cd(1)-O(7)B	87.63(9)	O(3)A-Cd(1)-O(7)B	82.73(8)
N(4)C-Cd(1)-O(7)B	81.46(8)	N(1)-Cd(1)-O(7)B	173.97(8)
O(1)-Cd(1)-O(2)	53.77(8)	O(3)A-Cd(1)-O(2)	142.32(8)
N(4)C-Cd(1)-O(2)	83.82(8)	N(1)-Cd(1)-O(2)	93.55(9)
O(7)B-Cd(1)-O(2)	92.47(8)		

(e) Selected bond distances (Å) and angles (°) for complex ${\bf 5}$

(f) Selected bond distances (Å) and angles (°) for complex $\mathbf{6}$

C32H26N4O9Cd			
Cd(1)-O(1)	2.1962(18)	Cd(1)-N(4)	2.311(2)
Cd(1)-O(3)A	2.3189(19)	Cd(1)-N(1)	2.352(2)
Cd(1)-O(9)	2.4912(19)	Cd(1)-O(4)A	2.5208(19)
O(1)-Cd(1)-N(4)	130.91(7)	O(1)-Cd(1)-O(3)A	92.36(7)
N(4)-Cd(1)-O(3)A	132.80(7)	O(1)-Cd(1)-N(1)	95.50(8)
N(4)-Cd(1)-N(1)	92.07(7)	O(3)A-Cd(1)-N(1)	102.84(7)
O(1)-Cd(1)-O(9)	87.35(7)	N(4)-Cd(1)-O(9)	82.69(7)
O(3)A-Cd(1)-O(9)	81.46(7)	N(1)-Cd(1)-O(9)	174.69(7)
O(1)-Cd(1)-O(4)A	144.79(7)	N(4)-Cd(1)-O(4)A	84.10(7)
O(3)A-Cd(1)-O(4)A	53.59(7)	N(1)-Cd(1)-O(4)A	85.26(7)
O(9)-Cd(1)-O(4)A	95.00(7)		

Fig.S1 (a) The coordination environment of Zn^{II} ion in complex **3**. The hydrogen atoms and the crystalline water molecules are omitted for clarity (A: 1 + x, y, z; B: -2 + x, y, 1 + z); (b) View of the 1D $[Zn(bdc)]_n$ linear chain and the 1D $[Zn(L)]_n$

left-handed helix chain; (c) 2D layer of complex 3; (d) Simplification of the 4-connected network.

Fig.S2 View of the 1D $[Zn(L)]_n$ left-handed helix chain and $[Zn(mip)]_n$ linear chain in

Fig.S3 (a) The coordination environment of Cd^{II} ion in complex **4**. The hydrogen atoms and the crystalline water molecules are omitted for clarity (A: -x, -y, -z; B: x, -1 + y, -1 + z); (b) 2D layer of complex **4**. (c) Simplification of the structure to a 3,4-connected network.

Fig.S4 View of the 1D [Cd(mip)]^{*n*} linear chain in **5**.

(c)

Fig.S5 (a) Coordination environment of Cd^{II} ion in **6**. The hydrogen atoms and the crystalline water molecules are omitted for clarity (A: 1 + x, y, z;); (b) The 1D channel-like chain of **6**; (c) 2D layer of complex **6**; (d) Simplification of the 3,5-connected network.

(b)

(e)

Fig. S7 The simulated (black) and experimental (red) and after photocatalytic

processes (blue and dark cyan) PXRD patterns for complexes **1–6** (except **4** due to its low yield).

Fig. S8 TG curves for complexes 1–6 (except 4 due to its low yield).

(a)

(**d**)

Fig. S9 Absorption spectra of the MB solution during the decomposition reaction

under UV light irradiation with the use of complexes 1, 2, 5, and 6.

Fig. S10 Absorption spectra of the RhB solution during the decomposition reaction under UV light irradiation with the use of complexes **1**, **2**, **5**, and **6**.