10.1071/CH15747_AC ©The Authors 2016 Australian Journal of Chemistry **2016**, **69(8)**, **856-864**

Supplementary Material

A Novel Self-Assembly Hierarchical-Structured Catalyst for the Diffusion of Macromolecules

Wei Ding^{A,C,D}, Dingcong Wang^B, Dezhi Zhao^C, Ming Ke^{A, D}

^AState Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China

^BFushun Research Institute of Petroleum and Petrochemicals, Fushun, Liaoning 113001, China

^CCollege of Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China

^DCorresponding authors. Email: cicy1125@163.com, keming@cup.edu.cn,

wangdingcong@hotmail.com

Tel: +86-024-56863015, 13841332886

Contents

1. Table S1 The pore structure characteristic of FA-Z self-assembly supports.

2. Figure S1 The 3D structure unit of RHP.

3. Figure S2 Relative molecular mass of different RHP by GPC traces.

4. Figure S3 The structure unit of super-solubility micelle and the process of formation from molecular self-assembly to nano self-assembly.

5. Figure S4 XRD patterns of nano self-assembly aluminum hydroxide before (a) and after (b) calcinations.

6. Figure S5 XPS profiles of the Mo3d curve fitting of the sulfured FA-Z catalysts.

7. Table S2 The binding energy and content of different valences Mo specie for FA-Z catalysts.

8. Figure S6 The curve of TG/DSC of the macro self-assembly Alumina support and catalyst.

9. Figure S7 Schematic diagram of the hydrotreating process for FCC diesel.

S-1: Properties self-assembly supports

Property	FA I	FAII	FAIII
V_{pore} , $(mL \cdot g^{-1})$	0.52/1.31*	0.60/1.34*	0.55/1.39*
A_{BET} , ($m^2 \cdot g^{-1}$)	235/253*	238/256*	231/253*
Average d _{pore} , nm	9.0/21.8*	10.1/20.9*	9.6/22.8*
Most probable d _{pore} , nm	8.0,25.0/7.5,42.0*	9.0,23.0/45.0*	7.0,45.0/7.0,45.0*
Pore distribution, %			
<6nm	22/3*	22/4*	23/4*
6-10nm	16/9*	14/12*	14/13*
10-30nm	26/32*	25/33*	24/36*
30-60nm	24/33*	26/40*	36/41*
60-100nm	12/12*	13/5*	3/3*
>100	11*	7*	3*
Bulk density , $g \cdot cm^{-3}$	0.34/0.63*	0.31/0.59*	0.34/0.64*
Strength , $(N \cdot mm^{-1})$	8.2	8.5	8.5
Porosity* / %	77	81	82

 Table S1 The pore structure characteristic of FA self-assembly supports.

Data of "*" represent mercury intrusion method. Others indicate BET method.

S-2: Structure unit of RHP

Figure S1 The 3D structure unit of RHP.

Figure S2 Relative molecular mass of different RHP by GPC traces. The (a) and (b) represent mass ratio 4:1 and 12:1 of the copolymer of polyisobutylene and maleic anhydride and triethanolamine, respectively.

S-4: Processing of self-assembly synthesis

Figure S3 The structure unit of super-solubility micelle and the process of formation from molecular self-assembly to nano self-assembly.

S-5: XRD of macropore alumina support

Figure S4 XRD patterns of nano self-assembly aluminum hydroxide before (a) and after (b) calcinations.

S-6: The XPS analysis of the Mo3d of catalysts.

Figure S5 XPS profiles of the Mo3d curve fitting of the sulfured FA-Z catalysts.

S-7:

Catalyst	Binding	Binding energy/eV		Relative content /%	
	Mo ⁴⁺	Mo ⁶⁺	Mo ⁴⁺	M0 ⁶⁺	
FA-Z29	228.87	232.07	75.42	24.58	
FA-Z30	228.90	232.50	75.44	24.56	
FA-Z31	229.25	232.37	72.64	27.36	

Table S3 The binding energy and content of different valences Mo speciefor FA-Z catalysts.

S-8: Calcination conditions of support and catalyst

Figure S6 The curve of TG/DSC of the macro self-assembly Alumina support and catalyst.

Figure S7 Schematic diagram of the hydrotreating process for FCC diesel.