SUPPLEMENTARY MATERIAL

A Fortuitous, Mild Catalytic Carbon-Carbon Bond Hydrogenolysis by a PhosphineFree Catalyst

Loorthuraja Rasu, Ben Rennie, Mark Miskolzie, and Steven H. Bergens*
University of Alberta, Department of Chemistry. 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
*Email: sbergens@ualberta.ca

Synthesis of 2,2,2-trifluoro-1-(piperidin-1-yl)ethanone (2). ${ }^{[1,2]}$

This is a modification of a literature procedure. ${ }^{[1,2]} 10.9 \mathrm{~mL}(7.9 \mathrm{~g}, 77.9 \mathrm{mmol})$ of triethylamine and $8.4 \mathrm{~mL}(7.3 \mathrm{~g}, 84.9 \mathrm{mmol})$ of piperidine were dissolved in 150 mL of stirred dichloromethane cooled in an ice/water bath. $10 \mathrm{~mL}(14.9 \mathrm{~g}$, 70.8 mmol) of trifluoroacetic anhydride was then added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was washed with $2 \times 50 \mathrm{~mL}$ 1 M HCl , with $2 \times 50 \mathrm{~mL}$ distilled water, with 50 mL of brine, dried over sodium sulfate, and filtered. The organic solvent was removed under reduced pressure to yield the 2,2,2-trifluoro-1-(piperidin-1-yl)ethanone (65%, colourless oil). The product purified by vacuum distillation (water aspirator) at $90{ }^{\circ} \mathrm{C}$ (boiling point $53{ }^{\circ} \mathrm{C}$ at 2.6 torr $) .{ }^{[1]}{ }^{1} \mathbf{H}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): 3.54-$ 3.64 (multiplet, 4 H); 1.65-1.71 (multiplet, 6 H$) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}:\left(\mathrm{CDCl}_{3}, 176 \mathrm{MHz}, \mathrm{ppm}\right): 155.32$ 116.65, 46.82, 44.56, 26.33, 25.36, 24.17. HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{ON}$: 181.0714. Found: $181.0716,112.0762$, and 69.0704. EA: Calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{ON}: \mathrm{C} 46.41$, H 5.56, N 7.73. Found: 45.86, 5.56, and 7.62.

N, N-Diethyl-2,2,2-trifluoroacetamide.

Prepared as described above. $12.9 \mathrm{~mL}(9.3 \mathrm{~g}, 92.8 \mathrm{mmol})$ of triethylamine and $8 \mathrm{~mL}(5.6 \mathrm{~g}, 77.3$ mmol) of diethylamine were dissolved in 150 mL of stirred dichloromethane cooled in an ice/ water bath. $10.9 \mathrm{~mL}(16.2 \mathrm{~g}, 77.3 \mathrm{mmol})$ of trifluoroacetic anhydride was then added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The reaction
mixture was washed with $2 \times 50 \mathrm{~mL} 1 \mathrm{M} \mathrm{HCl}, 2 \times 50 \mathrm{~mL}$ distilled water, 50 mL brine, dried over sodium sulfate, and filtered. The organic solvent was then removed under reduced pressure to yield the N, N-diethyl-2,2,2-trifluoroacetaminde (60%, yellow oil). The product purified by passed through a neutral alumina plug. ${ }^{1} \mathbf{H}-\mathbf{N M R}:{ }^{[3]}\left(\mathrm{CDCl}_{3}, 498.118 \mathrm{MHz}, \mathrm{ppm}\right): 1.20-1.27$ (multiplet, 6 H); 3.45-3.47 (multiplet, 4 H). The spectrum matches that reported for this compound. ${ }^{[3]}$

Piperidine-1-carbaldehyde $\mathbf{4}^{\mathbf{4}}{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): 8.01$ (singlet, 1 H$) ; 3.29-3.50$ (multiplet, 4H); 1.52-1.78 (multiplet, 6H).

N,N-Diethylformamide ${ }^{\mathbf{5}}:{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}:\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): 8.05$ (singlet, 1 H$) ; 3.37$ (q, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.27$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.13$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
trans $-\mathrm{RuCl}_{2}((S, S)$-skewphos $)((R, R)$-dpen $)(4)$ was prepared as reported previously. ${ }^{[6]}$
Figure S1. ${ }^{l} H$ NMR spectrum ($\delta 6.5$ to -2.0 ppm) of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{NCH}(\mathrm{Ph}) \mathrm{CH}(\mathrm{Ph}) \mathrm{NH}^{-}\right)\left(\eta^{1,5}-\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)\right] B F_{4}(6)$ formed by the reaction of 1, $\left((R, R)\right.$-dpen) and $K O^{t} B u$ in $\sim 1 \mathrm{~atm} H_{2}$ in $\mathrm{THF-d}$ at $80^{\circ} \mathrm{C}$.

Residual solvent, δ; coordinated (R, R)-dpen ligand, $N H_{2}=\bullet, N H^{-}=\Theta C H=0$; Non coordinated $(R$, $R)$-dpen ligand $=\otimes$, propylene, $\phi ;$ Free hydrogen gas $=H ;\left(\eta^{3}-C_{3} H_{5}\right)=\alpha ;\left(\eta^{1,5}-C_{8} H_{12}\right)=*$

Figure S2. ${ }^{1} \mathrm{H}$ NMR and zTOCSY1D spectrum ($\delta 6.5$ to -2.0 ppm) of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{NCH}(\mathrm{Ph}) \mathrm{CH}(\mathrm{Ph}) \mathrm{NH}^{-}\right.\right.$ $\left.)\left(\eta^{1,5}-C_{8} H_{12}\right)\left(\eta^{3}-C_{3} H_{5}\right)\right] B F_{4}(6)$ formed by the reaction of $1,((R, R)-d p e n)$ and $K O^{t} B u$ in $\sim 1 \mathrm{~atm}$ H_{2} in $\mathrm{THF}-d_{8}$ at $-80^{\circ} \mathrm{C}$.

Spectrum top to bottom

Spectrum 1: zTOCSY1D, sel.excite @ -1.34 ppm.(Coordinated (R, R)-dpen ligand)
Spectrum 2: zTOCSY1D, sel.excite @ 2.94 ppm. $\left(\eta^{1,5}-C_{8} H_{12}\right)$
Spectrum 3: zTOCSY1D, sel.excite @ -1.34 ppm. $\left(\eta^{3}-C_{3} H_{5}\right)$
Spectrum 4: ${ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{NCH}(\mathrm{Ph}) \mathrm{CH}(\mathrm{Ph}) \mathrm{NH}^{-}\right)\left(\eta^{1,5}-\mathrm{C}_{8} H_{12}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right] \mathrm{BF}_{4}$

Figure S3. ${ }^{1} H$ NMR spectrum ($\delta 6.5$ to -2.0 ppm) of the product (7) formed by the reaction between 1, $\left((R, R)\right.$-dpen) and $K O^{t} B u$ in $\sim 1 \mathrm{~atm} \mathrm{H}_{2}$ in $\mathrm{THF}-d_{8}$ at $-20{ }^{\circ} \mathrm{C}$.

Top: @-20 ${ }^{\circ} \mathrm{C}$; middle: @ -20 ${ }^{\circ} \mathrm{C}$ (after an hour); bottom: @ $-20{ }^{\circ} \mathrm{C}$ (after 4 hours)

Figure S4. ${ }^{1} H$ NMR spectrum ($\delta 9.0$ to -12.0 ppm) of the product formed by the reaction between 1, $\left((R, R)\right.$-dpen) and $K O^{t} B u$ in ~ 1 atm H_{2} in $T H F-d_{8}$ at $R T$.

Figure S5. ${ }^{1} H$ NMR spectrum ($\delta 5.0$ to 0.0 ppm) of the product formed by the reaction between 1, ((R, R)-dpen) and $K O^{t} \mathrm{Bu}$ in $\sim 1 \mathrm{~atm} \mathrm{H}_{2}$ in $T H F-d_{8}$ at $R T$.

Residual solvent, δ; Non-coordinated (R, R)-dpen ligand $=\otimes$, propane $=P$; Free hydrogen gas $=H$; Ethylamine $=E$

Figure S6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{NNMR}$ of a gHSQC spectrum (6 to -2 ppm) of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{NCH}(\mathrm{Ph}) \mathrm{CH}(\mathrm{Ph}) \mathrm{NH}\right)\left(\eta^{1,5}-C_{8} H_{12}\right)\left(\eta^{3}-C_{3} H_{5}\right)\right] B F_{4}(6)$ formed by the reaction of 1, $((R, R)-$ dpen) and $\mathrm{KO}^{t} \mathrm{Bu}$ in $\sim 1 \mathrm{~atm} \mathrm{H}_{2}$ in $\mathrm{THF}-d_{8}$ at $-80^{\circ} \mathrm{C}$. coordinated (R, R)-dpen ligand, $\mathrm{NH}_{2}=\bullet, \mathrm{NH}^{-}$ $=\Theta$; Non coordinated (R, R)-dpen ligand $=\otimes$

Top: Only the first increment of ${ }^{1} H_{-}{ }^{15} N N M R$ of a $g H S Q C$ was recorded to show proton directly attached to nitrogen. The data were acquired at $-80^{\circ} \mathrm{C}$ using ${ }^{1} J_{1 H-15 N}=90 \mathrm{~Hz}$ with the ${ }^{15} \mathrm{~N}$ decoupler set at 90 ppm.

Bottom: ${ }^{1} H$ NMR of the mixture containing 6.

Figure S7. ${ }^{19}$ F NMR spectrum ($\delta-65$ to -85.0 ppm) of the product formed by the reaction between the catalyst and 10 equivalents of substrate in $T H F-d_{8}$ at room temperature at different times. (Unidentified intermediate $=U$)

Top: After 15 min; middle: after 16 hours; bottom: after 20 hours

Figure S8. The $\delta 8.5$ to 1 ppm ${ }^{1} H$ NMR spectrum showing the formation of piperidine-1carbaldehyde resulting from the hydrogenation of 2,2,2-trifluoro-(piperidin-1-yl)ethanone (2) using $4 \mathrm{~atm} \mathrm{H}_{2}$ pressure at RT .

Residual solvent $=\delta$; Starting material, $2=\Delta$; product $=$ *

Figure S9. The ${ }^{l} H$ NMR spectrum showing the formation of N, N-diethylformamide resulting from the hydrogenation of N, N-diethyl-2, 2,2-trifluoroacetamide using 4 atm H_{2} pressure at $R T$.

Residual solvent $=\delta$; Starting material $=\Delta ;$ product $=*$
Top: Starting material; middle: product ($\delta 4$ to 0 ppm); bottom: product ($\delta 9$ to 0 ppm)

Control Experiments.

Hydrogenation using ruthenium nanoparticles.

20.7 mg of Ruthenium black (0.014 mmol assuming 7% of Ru atoms are on the surface) were weighed into a test tube equipped with a magnetic stir bar and a rubber septum. After purging with hydrogen gas for 10 minutes the ruthenium black was reduced by heating at $60{ }^{\circ} \mathrm{C}$ for 30 minutes under hydrogen ${ }^{7}$. After 30 minutes the test tube placed inside the stainless steel autoclave equipped with the test tube holder and flushed with hydrogen using cannulas, needle lines, and bubblers. 2,2,2-trifluoro-1-(piperidin-1-yl)ethanone (2, $1.25 \mathrm{mmol}, 90$ equiv.) in THF (1.0 mL) and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ($0.1875 \mathrm{mmol}, 14$ equiv.) in THF $(0.5 \mathrm{~mL})$ were added using gas tight syringes under

1 atm hydrogen. Additional THF added to make the final volume to be 2.5 mL . Hydrogenated at $4 \mathrm{~atm} \mathrm{H}_{2}$ and stirred for 22 hours at room temperature.

Hydrogenations in the presence of $\mathbf{H g}$ metal.

Cis- $\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{COD})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}(1,0.007 \mathrm{mmol}, 3 \mathrm{mg})$, and 2 equiv. of (R, R)-dpen $(0.014$ $\mathrm{mmol}, 3.0 \mathrm{mg}$) were weighed out into a test tube equipped with stir bar and septum. Freshly distilled THF (0.5 mL) was then added by cannula under argon pressure into the test tube. It was then heated at $60^{\circ} \mathrm{C}$ for 30 min while stirring (pale brown, clear liquid). After 30 minutes the resulting solution transferred to another test tube containing 200 equiv. of $\mathrm{Hg}(282.9 \mathrm{mg}, 1.41$ mmol) under 1 atm hydrogen atmosphere. 2,2,2-trifluoro-1-(piperidin-1-yl)ethanone (2, 129.6 $\mathrm{mg}, 0.715 \mathrm{mmol}, 100$ equiv.) in THF (1.0 mL) and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ($0.107 \mathrm{mmol}, 15$ equiv.) in THF (0.5 mL) were added using gas tight syringes under 1 atm hydrogen atmosphere. Additional THF added to make the final volume to be 2.5 mL . Hydrogenated at $4 \mathrm{~atm}_{\mathrm{H}}^{2}$ and stirred for 22 hours at room temperature.

Crystallographic Experimental Details

Crystal Structure deposited on Crystallographic Data Centre (CCDC deposition number: 1442770)

Table 1. Crystallographic Experimental Details
A. Crystal Data
formula
formula weight
$\mathrm{C}_{45} \mathrm{H}_{50} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}$
crystal dimensions (mm)
994.58
$0.19 \times 0.08 \times 0.03$
crystal system
orthorhombic
space group
P212121 (No. 19)
unit cell parameters ${ }^{a}$
$a(\AA)$
10.4622 (2)
$b(\AA)$
17.2073 (3)
$c(\AA)$
25.8113 (5)
$V\left(\AA^{3}\right)$
Z
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
4646.71 (15)

4
1.422
$\mu\left(\mathrm{mm}^{-1}\right)$

B. Data Collection and Refinement Conditions

diffractometer
radiation $(\lambda[\AA])$
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
independent reflections
number of observed reflections (NO)
structure solution method
refinement method
2013 ${ }^{c}$)
absorption correction method
range of transmission factors
data/restraints/parameters
Flack absolute structure parameter d
goodness-of-fit ($S)^{e}$ [all data]
Bruker D8/APEX II CCD ${ }^{b}$
$\mathrm{CuK} \alpha(1.54178)$ (microfocus source)
-100
ω and ϕ scans (1.0°) (5 s exposures)
140.48
$9431(-12 \leq h \leq 12,-20 \leq k \leq 21,-31 \leq l \leq 31)$
$9431\left(R_{\text {int }}=0.1258\right)$
$8751\left[F_{\mathrm{O}}{ }^{2} \geq 2 \sigma\left(F_{\mathrm{O}}{ }^{2}\right)\right.$]
intrinsic phasing (SHELXT-2014C)
full-matrix least-squares on F^{2} (SHELXL-
multi-scan (TWINABS)
0.7533-0.5249

9431 / 0 / 522
-0.010(7)
1.051
final R indices f

$$
\begin{array}{ll}
R_{1}\left[F_{\mathrm{O}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] & 0.0415 \\
w R_{2} \text { [all data] } & 0.1010 \\
\text { largest difference peak and hole } & 0.822 \mathrm{a}
\end{array}
$$

a Obtained from least-squares refinement of 9510 reflections with $6.84^{\circ}<2 \theta<139.46^{\circ}$.
$b_{\text {Programs for diffractometer operation, data collection, data reduction and absorption correction }}$ were those supplied by Bruker. The crystal used for data collection was found to display nonmerohedral twinning. Both components of the twin were indexed with the program CELL_NOW (Bruker AXS Inc., Madison, WI, 2004). The second twin component can be related to the first component by 180° rotation about the $\left[\begin{array}{lll}-0.03 & 1 & 0\end{array}\right]$ axis in real space and about the $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ axis in reciprocal space. Integrated intensities for the reflections from the two components were written into a SHELXL-2013 HKLF 5 reflection file with the data integration program SAINT (version V8.34A), using all reflection data (exactly overlapped, partially overlapped and non-overlapped). The refined value of the twin fraction (SHELXL-2014 BASF parameter) was $0.483(2)$.
${ }^{c}$ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
$d_{\text {Flack, H. D. Acta Crystallogr. 1983, A39, 876-881; Flack, H. D.; Bernardinelli, G. Acta }}$ Crystallogr. 1999, A55, 908-915; Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143-1148. The Flack parameter will refine to a value near zero if the structure is in the correct configuration and will refine to a value near one for the inverted configuration.
$e_{S}=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0653 P)^{2}+0.5429 P\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3\right)$.
$f_{R_{1}}=\Sigma| | F_{\mathrm{O}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{O}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{O}}^{2}-F_{\mathrm{c}^{2}}\right)^{\left.2 / \Sigma w\left(F_{\mathrm{O}}{ }^{4}\right)\right]^{1 / 2} .}\right.$

Table 2. Selected Interatomic Distances (\AA)
(a) within the $\left[\mathrm{RuCl}_{2}\left\{2,4-\left(\mathrm{Ph}_{2} P\right)_{2}\right.\right.$-pentane $\}\{1,2$-diphenylethylenediamine $\left.\}\right]$ molecule

Atom1	Atom2	Distance	Atom1	Atom2	Distance
Ru	Cl 1	2.4163(13)	C21	C22	1.392(9)
Ru	Cl 2	$2.4148(14)$	C21	C26	1.397(8)
Ru	P1	$2.2638(13)$	C22	C23	1.389(9)
Ru	P2	2.2816(12)	C23	C24	$1.373(11)$
Ru	N1	2.170 (5)	C24	C25	$1.398(12)$
Ru	N2	$2.185(4)$	C25	C26	$1.386(10)$
P1	C1	1.851(6)	C31	C32	$1.401(8)$
P1	C11	1.834(6)	C31	C36	$1.406(8)$
P1	C21	1.832(6)	C32	C33	$1.380(9)$
P2	C3	1.868(6)	C33	C34	$1.384(10)$
P2	C31	1.835(6)	C34	C35	$1.388(10)$
P2	C41	1.852(6)	C35	C36	$1.387(9)$
N1	H1NA	0.92(9)	C41	C42	$1.400(8)$
N1	H1NB	0.88(10)	C41	C46	$1.394(8)$
N1	C6	1.492(6)	C42	C43	1.387(8)
N2	H2NA	0.94(8)	C43	C44	$1.375(10)$
N2	H2NB	0.85(9)	C44	C45	$1.384(10)$
N2	C7	1.491(7)	C45	C46	1.390 (8)
C1	C2	1.535(8)	C51	C52	$1.389(8)$
C1	C4	1.529(8)	C51	C56	$1.389(7)$
C2	C3	1.537(8)	C52	C53	$1.404(9)$
C3	C5	$1.535(9)$	C53	C54	$1.384(11)$
C6	C7	1.540(7)	C54	C55	$1.387(11)$
C6	C51	1.514(7)	C55	C56	$1.377(9)$
C7	C61	1.520(6)	C61	C62	$1.380(8)$
C11	C12	1.398(8)	C61	C66	$1.390(9)$
C11	C16	1.386(8)	C62	C63	$1.393(8)$
C12	C13	1.388(9)	C63	C64	$1.372(11)$
C13	C14	$1.389(12)$	C64	C65	1.390 (10)
C14	C15	1.380(12)	C65	C66	$1.388(8)$
C15	C16	1.393(9)			

Reference:

[1]. H. A. Schenck, P. W. Lenkowski, I. Choudhury-Mukherjee, S.-H. K. Ko, J. P. Stables, M. K. Patel, M. L. Brown, Bioorganic Medicinal Chemistry 2004, 12, 979.
[2]. X. Lu, S, Cseh, H.-S. Byun, G. Tigyi, R. Bittman, Journal Organic Chemistry 2003, 68, 7046.
[3] D. P. Smith, J. Anderson, J. Plante, A. E. Ashcroft, S. E. Radford, A. J. Wilson, M. J. Parker, Chem. Соттип., 2008, 5728-5730.
[4]. N. Ortega, C. Richter, F. Glorius, Org.Lett., 2013, 15(7), 1776-1779 (pippyridine aldehyde) [5]. C. C. Chong, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 12116-12120 (Ethyl aldehyde).
[6]. O. M. Akotsi, K. Metera, R. D. Reid, R. Mcdonald, S. H. Bergens, Chirality, 2000, 12, 514522.
[7]. M. E. P. Markiewics, PhD Thesis, University of Alberta, 2011

