Supplementary Material

The Influence of the Amino Group Positions on Aryl Moiety of SarAr on Metal Complexation and Protein Labelling Derivatives †

Vincent Jamier, A,B Eskender Mume, A,C Cyril Papamicaël, B and Suzanne. V. Smith'A,C,D

ACenter of Excellence in Antimatter Matter Studies (CAMS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC NSW 2232, Australia.

BUMR CNRS COBRA 6014, 1 Rue Tesnière 76130 Mont-Saint-Aignan, France.

CCAMS, Australian National University, Canberra, ACT 0200, Australia.

DCorresponding author. Email: Suzanneoznq@gmail.com

Metal complexation studies

Fig. S1 Complexation of Cu(II) with 3b (m-SarAr) at 5x10⁻⁶ M over time at 25°C.
Fig. S2 Complexation of Cu(II) with 3c (o-SarAr) at 5x10^{-6} M over time at 25°C.

Fig. S3 Complexation of Co(II) with 3a (p-SarAr) at 5x10^{-6} M over time at 25°C.

Fig. S4 Complexation of Co(II) with 3b (m-SarAr) at 5x10^{-6} M over time at 25°C.
Fig. S5 Complexation of Co(II) with 3c (o-SarAr) at 5x10⁻⁶ M over time at 25°C.

Fig. S6 Complexation of Cd(II) with 3a (p-SarAr) at 5x10⁻⁶ M over time at 25°C.

Fig. S7 Complexation of Cd(II) with 3b (m-SarAr) at 5x10⁻⁶ M over time at 25°C.
Fig. S8 Complexation of Cd(II) with 3c (o-SarAr) at 5x10^{-6} M over time at 25°C.