Supplementary Material ## **Stability of Polymer Interlayer Modified ITO Electrodes for Organic Solar Cells** Anirudh Sharma^A, Zandra George^B, Trystan Bennett, ^C David A. Lewis^D, Gregory F. Metha ^C Gunther G. Andersson^D and Mats R. Andersson^{A,E} **Figure S1:** Normalised XPS survey spectra of a fresh PEIE modified ITO surface and after two weeks of ageing in air. ^A Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia. ^B Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Goteborg, Sweden. ^C Department of Chemistry, University of Adelaide, Adelaide SA 5000, Australia. ^D Flinders Centre for Nanoscale Science and Technology, Flinders University, Adelaide SA 5042, Australia. ^E Corresponding Author. E-mail: Mats.Andersson@unisa.edu.au **Figure S2:** High resolution XP spectra of N 1s from a fresh PEIE modified ITO surface and after two weeks of ageing in air. **Figure S3:** Normalised XPS survey spectra of a fresh PFPA-1 modified ITO surface and after two weeks of ageing in air. **Figure S4:** High resolution XP spectra of N 1s from a fresh PFPA-1 modified ITO surface and after two weeks of ageing in air.