10.1071/CH16058_AC ©The Authors 2016 Australian Journal of Chemistry 2016, 69(8), 925-927

Supplementary Material

Flowers in Australia: Phytochemical Studies on the Illawarra Flame Tree and Alstonville

Rudi Hendra^A and Paul A. Keller^{A,B}

^ASchool of Chemistry, University of Wollongong, NSW 2522, Australia.

^BCorresponding author. Email: keller@uow.edu.au

General Procedures

The HPLC profile from both species were perform using a Waters (Waters 1525 pump, Waters 2487 detector, controlled by Breeze software v3.30) with a Symmetry C-18 column (5 μ m, 4.9 x 150 mm) with a Wakosil C-18 RS column (5 μ m, 4.6 x 250 mm). All compounds were isolated by Preparative HPLC using a Waters prep-LC system (LC-600 controller, 2489 detector, LC150 Pump, PD1 degasser) with a Waters reverse-phase OBD SunfireTM C-18 column (5 μ m, 19 x 150 mm) protected with a Waters SunfireTM C-18 guard column (5 μ m, 19 x 10 mm). All analytical HPLC samples were filtered through Grace syringe filter PTFE 0.45 μ m, 4 mm and preparative HPLC samples were filtered through Grace syringe filter 0.45 μ m, 30 mm. A Büchi Rotary Evaporator (R-114/200) with a high vacuum pump was used for evaporation of solvents under reduced pressure at 40 °C.

Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded at 500 and 125.7 MHz respectively on a Varian Unity Inova-500 MHz spectrometer, controlled by Varian VNMR software (version 6.1 revision C). NMR spectra were acquired in CD₃OD with chemical shifts (δ) reported in parts per million (ppm) relative to CD₃OD (¹H: δ = 3.31 ppm; ¹³C: δ = 49.2 ppm) (unless otherwise specified). Coupling constants (*J*) are reported in Hertz (Hz). *J* values listed in ¹H NMR spectral data refer to coupling between hydrogen nuclei.

Electrospray (ESI) mass spectra were obtained on a LCMS-2010 EV (Shimadzu). Samples were injected as a solution in methanol HPLC grade. High Resolution (HR) ESI mass spectrometry (MS) was performed on a Micromass QTOF2 Ultima Spectrometer.

Optical Rotations were measured a 25 °C in methanol with a path length of 1.0 dm on a Jasco P-2000 Digital Polarimeter (l = 589 nm) and concentrations (*c*) are given in g/100 mL. CD Spectra were recorded on a JASCO J-810 spectropolarimeter with pathlength 0.1 cm and concentration between 50-100 µM in methanol.

HPLC profile from Illawarra flame (*B. acerifolius*) (**A**) and Alstonville flowers (*T. lepidota*) polar extracts(**B**).

Compound 1 and 10

Quercetin, light yellow solid. ESIMS, *m/z*: 303 [M+1]⁺. UVmax (MeOH) (nm): 229; 255; 371.

Position	Experiment (CD ₃ Ol	D)	Literature (CD ₃ OD)	[14]
	Proton	Carbon	Proton	Carbon
2		158.6		156.6
3		135.1		135.2
4		178.5		175.9
5		163.1		161.0
6	6.18 (d, <i>J</i> = 2.1 Hz)	99.0	6.27 (d, <i>J</i> = 2.1Hz)	97.8
7		165.3		164.1
8	6.39 (d, <i>J</i> = 2.1 Hz)	94.0	6.54 (d, J = 2.1 Hz)	93.5
8a		159.1		156.8
4a		105.7		104.1
1'		122.2		122.7
2'	7.73 (d, <i>J</i> = 2.1 Hz)	114.5	7.74 (d, <i>J</i> = 2.1 Hz)	114.8
3'		149.8		147.3
4'		145.9		144.8
5'	6.89 (d, <i>J</i> = 8.5 Hz)	114.6	6.90 (d, <i>J</i> = 8.5 Hz)	114.6
6'	7.63 (dd, <i>J</i> = 8.5, 2.2 Hz)	120.5	7.64 (dd, $J = 8.5, 2.2$ Hz)	120.2

Pelargonidin 3-(6-coumaryl- β -glucoside)-5-(6-acetyl- β -glucoside). UVmax (MeOH) (nm): 233; 344; 508. ESIMS, *m*/*z*: 783 [M+1]⁺.

Position	Experiment (0.1% CF ₃ COOD in CD ₃ OD)		Literature (0.1% CF ₃ COOD in CD ₃ OD) ^[15]	
	Proton	Carbon	Proton	Carbon
2		164.5		165.2
3		145.6		145.8
4	9.05 (s)	135,8	8.94 (s)	135.6
5		156.7		156.4
6	6.19 (s)	98.6	6.97 (d)	106.1
7		168.8		169.9
8	6.17 (s)	98.6	6.96 (d)	97.4
8a		157.4		157.1
4a		111.5		113.3
1'		119.0		120.6
2'	8.56 (s)	134.5	8.56 (d)	136.2
3'	7.05 (d, <i>J</i> = 8.9 Hz)	116.5	7.04 (d)	118.2
4'		167.8		167.4
5'	7.05 (d, $J = 8.9$ Hz)	116.5	7.04 (d)	148.5
6'	8.56 (s)	134.5	8.56 (s)	136.2

<i>p</i> -				
Coumaryl				
1"		127.9		126.7
2"	7.26 (s)	132.4	7.19 (s)	131.4
3"	6.88 (d, J = 8.9 Hz)	114.5	6.69 (d)	116.8
4''		160.3		161.3
5"	6.88 (d, J = 8.9 Hz)	114.5	6.69 (d)	116.3
6"	7.26 (s)	132.1	7.19 (s)	131.4
7''	7.38 (d, $J = 12.4$ Hz)	149.8	7.34 (d)	147.1
8"	6.23 (d, <i>J</i> = 12.5 Hz)	115.1	6.23 (d)	114.7
9"		170.1		169.2
Acetyl				
1'''		171.1		172.9
2""	1.99 (s)	19.2	1.99 (s)	20.7
Glucose A				
1	5.29 (d, J = 7.0 Hz)	103.7	5.38 (d)	102.8
2	3.71 (m)	74.9	3.71 (dd)	74.8
3	3.68 (t, J = 6.5 Hz)	78.6	3.58 (t)	78.2
4	3.40 (m)	72.3	3.50 (m)	72.3
5	3.80 (dd, J = 8.4 Hz, 8.0 Hz)	75.4	3.90 dd/ 3.55 (m)	75.5
	3.45 (m)			
6	4.45-4.52 (m)	64.2	4.45-4.52 (m)	64.5
Glucose B				
1	5.06 (d, J = 7.5 Hz)	100.2	5.18 (d)	102.8
2	3.79 (m)	74.2	3.77 (dd)	74.8
3	3.60 (t, J = 6.5 Hz)	77.5	3.57 (dd)	77.7
4	3.47 (m)	71.3	3.43 (dd)	71.1
5	3.68 (m)	76.4	3.62 (ddd)	76.0
6	3.71 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)/ 4.06 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	64.5	3.75 (dd)/ 4.02 (dd)	64.5

Kaempferol 3-rutinoside, yellow solid. UVmax (MeOH) (nm): 225; 268; 349. ESIMS, m/z: 595 [M+1]⁺. HRESIMS: calculated for C₂₇H₃₀O₁₅Na [M+Na]⁺: 617.1482, found 617.1484

Position	Experiment (C	Experiment (CD ₃ OD)		(CD ₃ OD) ^[14]
	Proton	Carbon	Proton	Carbon
2		161.6		161.4
3		135.3		135.5
4		179.5		179.4
5		163.1		163.0
6	6.20 (d, <i>J</i> = 2.1 Hz)	99.8	6.21 (d)	99.9
7		166.1		166.0
8	6.39 (d, <i>J</i> = 2.1 Hz)	94.4	6.40 (d)	94.9
8a		158.6		158.5
4a		105.7		105.5
1'		122.7		122.7
2'	8.06 (d, <i>J</i> = 8.4 Hz)	132.6	8.05 (d)	132.3
3'	6.89 (d, <i>J</i> = 8.5 Hz)	116.4	6.89 (d)	116.1
4'		159.5		159.4
5'	6.89 (d, <i>J</i> = 8.5 Hz)	116.4	6.89 (d)	116.1
6'	8.06 (d, <i>J</i> = 8.4 Hz)	132.6	8.05 (d)	132.3
3-Glucosyl				

1	5.12 (d, J = 7.0 Hz)	104.8	5.12 (d)	104.5
2	3.43 (m)	75.9	3.43 (dd)	75.7
3	3.40 (t, J = 6.5 Hz)	78.3	3.40 (t)	78.1
4	3.24 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	71.6	3.24 (t)	71.4
5	3.32 (m)	77.3	3.32 (ddd)	77.2
6	3.80 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)/3.37 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	68.7	3.80 (dd)/3.37 (dd)	68.5
6"-				
Rhammnosyl				
1	4.52 (s)	102.5	4.51 (s)	102.4
2	3.62 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	72.2	3.62 (dd)	72.1
3	3.51 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	72.4	3.51 (dd)	72.3
4	3.27 (dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	74.0	3.27 (t)	73.8
5	3.44 dd, <i>J</i> = 8.4 Hz, 8.0 Hz)	69.9	3.44 (dq)	69.7
6	1.11 (s)	18.1	1.11 (d)	17.9

Naringenin 7-*O*-glucoronide. Dark yellow solid. $[\alpha]_D^{25}$ -35.9° (c 0.11, MeOH). UVmax (MeOH) (nm): 227; 268; 348. CD (nm, $\Delta \epsilon$): 217 (+6.17), 248 (+1.49), 287 (-6.07) (100 µM, MeOH). ESIMS, *m/z*: 471 [M+Na]⁺. HRESIMS: calculated for C₂₁H₂₀O₁₁Na [M+Na]⁺: 471.3667, found 471.3675

Position	Experiment (CD ₃ OD)		Literature (CD ₃ OD) ^[16]	
	Proton	Carbon	Proton	Carbon
2	5.40 (dd, <i>J</i> = 13.0, 3.1 Hz)	80.9	5.39 (dd)	79.3
3	3.17 (dd, <i>J</i> = 17.2, 13.0 Hz)/ 2.75 (dd, <i>J</i> = 17.2, 3.0	44.3	3.18 (dd)/ 2.75	42.8
	Hz)		(dd)	
4		198.8		197.2
5		165.1		163.6
6	6.19 (m)	98.1	6.17 (brs)	96.5
7		166.8		165.1
8	6.19 (m)	97.1	6.16 (brs)	95.4
8a		164.8		163.2
4a		105.2		103.7
1'		131.0		129.4
2'	7.33 (d, $J = 8.2$ Hz)	129.0	7.33 (d)	127.7
3'	6.82 (d, <i>J</i> = 8.2 Hz, 1H)	116.5	6.82 (d)	114.9
4'		159.3		157.7
5'	6.82 (d, <i>J</i> = 8.2 Hz, 1H)	116.5	6.82 (d)	114.9

6'	7.33 (d, $J = 8.2$ Hz)	129.0	7.33 (d)	127.7
1	5.06 (dd, <i>J</i> = 7.2, 3.6 Hz)	101.2	5.07 (d)	99.6
2	3.49 (dd, <i>J</i> = 6.5, 3.1 Hz)	77.3	3.49 (dd)	75.6
3	3.47 (t, J = 8.9 Hz)	73.8	3.47 (t)	72.9
4	3.60 (t, J = 8.9 Hz)	72.6	3.60 (t)	71.4
5	4.03 (d, J = 9.6 Hz)	76.1	4.09 (d)	75.2
6		169.4		169.4

CD spectrum for Compound 4

Prainianonide, Dark yellow solid. $[\alpha]_D^{25}$ +24.57° (c 0.17, MeOH). UVmax (MeOH) (nm): 227; 268; 348. CD (nm, $\Delta \epsilon$): 217 (+1.7), 248 (+0.59), 287 (-1.60) (30 µM, MeOH). ESIMS, *m/z*: 487 [M+Na]⁺.

Position	Experiment (CD ₃ OD)		Literature (CD ₃ OD) ^[16]	
	Proton	Carbon	Proton	Carbon
2	5.40 (dd, <i>J</i> = 13.0, 3.1 Hz)	80.9	5.39 (dd)	79.3
3	3.17 (dd, <i>J</i> = 17.2, 13.0 Hz)/ 2.75 (dd, <i>J</i> = 17.2, 3.0 Hz)	44.3	3.18 (dd)/ 2.75 (dd)	42.8
4		198.8		197.2
5		165.1		163.6
6	6.19 (m)	98.1	6.17 (brs)	96.5
7		166.8		165.1
8	6.19 (m)	97.1	6.16 (brs)	95.4
8a		164.8		163.2
4a		105.2		103.7
1'		131.0		129.4
2'	7.33 (d, $J = 8.2$ Hz)	129.0	7.33 (d)	127.7
3'	6.82 (d, J = 8.2 Hz, 1H)	116.5	6.82 (d)	114.9
4'		159.3		157.7
5'	6.82 (d, <i>J</i> = 8.2 Hz, 1H)	116.5	6.82 (d)	114.9
6'	7.33 (d, $J = 8.2$ Hz)	129.0	7.33 (d)	127.7

1	$5.06 (\mathrm{dd}, J = 7.2, 3.6 \mathrm{Hz})$	101.2	5.07 (d)	99.6
2	$3.49 (\mathrm{dd}, J = 6.5, 3.1 \mathrm{Hz})$	77.3	3.49 (dd)	75.6
3	3.47 (t, J = 8.9 Hz)	73.8	3.47 (t)	72.9
4	3.60 (t, J = 8.9 Hz)	72.6	3.60 (t)	71.4
5	4.03 (d, J = 9.6 Hz)	76.1	4.09 (d)	75.2
6		169.4		169.4
OCH ₃	3.78 (s)	52.3	3.76 (s)	51.5

CD spectrum for Compound 5

Kaempferol, yellow solid. UVmax (MeOH) (nm): 228; 267; 366. ESIMS, *m/z*: 309 [M+Na]⁺

Position	Experiment (CD:	3OD)	Literature ((CD ₃ OD) ^[14]
	Proton	Carbon	Proton	Carbon
2		161.6		161.4
3		135.3		135.5
4		179.5		179.4
5		163.1		163.0
6	6.18 (d, $J = 2.0$ Hz)	99.8	6.21 (d)	99.9
7		166.1		166.0
8	6.39 (d, <i>J</i> = 2.0 Hz)	94.4	6.40 (d)	94.9
8a		158.6		158.5
4a		105.7		105.5
1'		122.7		122.7
2'	8.08 (d, <i>J</i> = 8.6 Hz)	132.6	8.05 (d)	132.3
3'	6.90 (d, <i>J</i> = 8.6 Hz)	116.4	6.89 (d)	116.1
4'		159.5		159.4
5'	6.90 (d, <i>J</i> = 8.6 Hz)	116.4	6.89 (d)	116.1
6'	8.08 (d, <i>J</i> = 8.6 Hz)	132.6	8.05 (d)	132.3

2,3,5-Trihydroxybenzoic acid, white solid. UVmax (MeOH) (nm): 254. ESIMS, *m/z*: 171 [M+1]⁺

1		122.3		119.5
2		139.0		139.7
3		145.3		142.9
4	6.97 (s)	102.6	6.87 (s)	101.4
5		152.3		151.7
6	7.48 (s)	111.5	7.32 (s)	110.4
7		169.6		168.5

Compound 9 Avicularin. Yellow solid. UVmax (MeOH) (nm): 226; 259; 353. ESIMS, *m/z*: 435 [M+1]⁺

Quercetin 3-glucoside. Yellow solid. UVmax (MeOH) (nm): 228; 259; 359. ESIMS, m/z: 465 $[M+1]^+$

Position	Experiment (CD ₃ OD)		Literature (CD ₃ OD)	[14]
	Proton	Carbon	Proton	Carbon
2		158.2		156.6
3		135.6		135.2
4		179.7		175.9
5		163.2		161.0
6	6.21 (d, <i>J</i> = 2.1 Hz)	99.8	6.27 (d, <i>J</i> = 2.1 Hz)	97.8
7		165.9		164.1
8	6.41 (d, $J = 2.1$ Hz)	94.7	6.54 (d, <i>J</i> = 2.1 Hz)	93.5
8a		159.0		156.8
4a		105.9		104.1
1'		122.2		122.7
2'	7.84 (d, $J = 2.2$ Hz)	116.0	7.74 (d, <i>J</i> = 2.1 Hz)	114.8
3'		149.1		147.3
4'		146.8		144.8
5'	6.87 (d, <i>J</i> = 8.6 Hz)	115.7	6.90 (d, <i>J</i> = 8.5 Hz)	114.6
6'	7.59 (dd, $J = 8.5$, 2.3 Hz)	122.0	7.64 (dd, <i>J</i> = 8.5, 2.2 Hz	120.2
1"	5.16 (d, J = 6.5 Hz)	104.5	5.24 (d, <i>J</i> =7.4 Hz)	104.0
2"	3.47 (dd, <i>J</i> =7.6 Hz)	75.7	3.44 (dd, <i>J</i> =7.4 Hz, 9.1 Hz)	75.7

3"	3.42 (m)	78.1	3.41 (t, <i>J</i> =9.1 Hz)	78.2
4"	3.34 (m)	71.1	3.32 (t, <i>J</i> =9.1 Hz)	71.3
5"	3.25 (dd, <i>J</i> = 6.5 Hz, 8.4 Hz)	78.5	3.19 (ddd, <i>J</i> = 2.2 Hz, 5.8 Hz, 9.1 Hz)	77.2
6''	3.71 (1H, dd, <i>J</i> = 10.5, 6.5 Hz)/ 3.58 (1H, dd, <i>J</i> = 10.5, 6.5 Hz)	62.5	3.68 (dd, <i>J</i> = 2.2 Hz, 12.3 Hz) 3.52 (dd, <i>J</i> = 5.8 Hz, 12.3 Hz)	68.5
			·	

Isorhamnetin 3-rutinoside, pale yellow solid. UVmax (MeOH) (nm): 225; 268; 359; ESIMS, *m/z*:

Position	Experiment (CD ₃ OD)		Literature (CD ₃ OD) ^[19]	
	Proton	Carbon	Proton	Carbon
2		159.6		157.1
3		135.6		134.2
4		179.7		178.0
5		163.6		161.8
6	6.21 (d, <i>J</i> = 2.1 Hz)	100.6	6.18 (d, <i>J</i> = 2.2 Hz)	99.2
7		163.8		166
8	6.41 (d, <i>J</i> = 2.1 Hz)	95.6	6.37 (d, <i>J</i> = 2.2 Hz)	94.0
8a		158.1		157.5
4a		107.5		104.2
1'		122.6		121.8
2'	7.74 (s)	116.2	7.92 (d, <i>J</i> = 1.8Hz	113.6
3'		143.6		147.2
4'		149.0		149.7
5'	6.88 (d, <i>J</i> = 8.5 Hz)	115.8	6.90 (d, <i>J</i> = 8.4Hz)	114.9
6'	7.58 (d, J = 8.6 Hz)	122.6	7.62 (d, $J = 8.6$ Hz)	122.8
OCH ₃	3.82 (s)	56.8	3.94 (s)	55.6
3-Glucosyl				

1	5.17 (d, <i>J</i> = 6.5 Hz)	104.1	5.21 (d)	104.4
2	3.47 (s)	75.9	Unresolved	74.9
3	3.43(m)	78.2	Unresolved	76.2
4	3.32 (m)	71.6	Unresolved	70.6
5	3.21 (m)	77.3	Unresolved	7703
6	3.52/ (m) 3.70 (d)	68.5	3.45 (m)/3.80 (d)	67.4
6"-Rhammnosyl				
1	4.53 (s)	101.3	4.52 (d)	101.3
2	3.62 (s)	70.8	Unresolved	70.8
3	3.49 (dd, <i>J</i> = 6.5 Hz, 8.4Hz)	71.1	Unresolved	71.1
4	3.26 (m)	72.6	Unresolved	72.6
5	3.42 (m)	68.6	Unresolved	68.6
6	1.24 (s)	16.7	1.09 (d)	16.7

Malvidin 3-(*p*-coumarylglucoside)-5-acetylxyloside, dark purple solid. UVmax (MeOH) (nm): 210; 291; 311; 537 ESIMS, m/z: 813 [M+1]⁺, HRESIMS: calculated for C₃₉H₄₂O₁₉ [M+1]⁺: 814.2338, found 814.2320

Position	Experiment (0.1% CF ₃ COOD in CD ₃ OD)		Literature (0.1% CF ₃ COOD in CD ₃ OD) ^[20]	
	Proton	Carbon	Proton	Carbon
2		162.5		162.0
3		145.5		145.0
4	8.70 (s)	135.8	8.56 (s)	130.7
5		157.7		154.4
6	6.84 (s)	102.9	6.99 (d)	103.2
7		167.8		167.4
8	7.02 (s)	95.8	6.92 (d)	96.8
8a		157.4		155.3
4a		111.5		111.6
1'		118.0		118.2
2'	7.96 (s)	109.9	8.56 (d)	110.0
3'		148.4	7.04 (d)	148.5
4'		144.9		145.6
5'		148.4	7.04 (d)	148.5

6'	7.96 (s)	109.9	8.56 (d)	110.0
OCH ₃	3.99 (s)	55.8	3.97 (s)	56.6
<i>p</i> -				
Coumaryl				
1"		167.9		166.9
2"	6.27 (d, <i>J</i> = 15.9 Hz)	113.4	6.31 (d)	113.7
3"	7.45 (d, $J = 15.8$ Hz)	145.5	7.50 (d)	145.3
4"		125.3		125.2
5"	7.28 (d, $J = 8.1$ Hz)	130.0	7.44 (d)	130.4
6''	6.73 (d) (d, <i>J</i> = 8.1 Hz)	115.1	6.79 (d)	115.7
7''		159.8		160.0
8"	6.73 (d) (d, <i>J</i> = 8.1 Hz)	115.1	6.79 (d)	115.7
9"	7.28 (d, $J = 8.1$ Hz)	130.0	7.44 (d)	130.4
Acetyl				
1'''		171.1		170.7
2'''	2.15 (s)	19.8	2.12 (s)	21.3
Xylosyl				
1	5.29 (d, $J = 7.5$ Hz)	99.9	5.45 (d)	99.7
2	5.13 (dd, <i>J</i> = 7.5 Hz, 8.0 Hz)	73.7	5.00 (dd)	73.7
3	3.75 (dd, <i>J</i> = 8.5 Hz, 8.0 Hz)	73.2	3.60 (t)	73.2
4	3.66 (dd, <i>J</i> = 7.5 Hz, 8.0 Hz)	76.9	3.48 (m)	76.7
5	3.51 (1H, dd, J = 10.5, 6.5 Hz)/3.91 (1H, dd, I = 10.5, 6.5 Hz)	65.5	3.80 dd/ 3.55 (m)	65.9
Glucosyl	dd, 5 – 10.5, 0.5 112)			
1	$5.48(d_1 - 7.7 H_2)$	00.8	5 34 (d)	100.6
2	3.79 (dd, J = 7.5 Hz, 8.0 Hz)	99.8 73.24	3.54 (u)	73.2
3	3.48 (dd, J = 8.5 Hz, 8.0 Hz)	70.5	3.50(t)	76.7
0		8		,
4	3.63 (dd, <i>J</i> = 7.5 Hz, 8.0 Hz)	69.1	3.39 (t)	69.9
5	4.38 (dd, J = 7.5 Hz, 8.0 Hz)	74.1	4.24 (m)	74.2
6	4.63 (1H, dd, <i>J</i> = 10.5, 6.5 Hz)/4.21 (1H, dd, <i>J</i> = 10.5, 6.5 Hz)	63.2	4.53 (d)/ 4.26 (m)	63.5
			1	

Alstonville (T. lepidota)		Illawarra flame (<i>B. acerifolius</i>)		
No.	Compound name	Peak No.	Compound name	
1.	Hexanal	1.	Cyclohexane	
2.	2-Heptenal	2.	2,2,2-Trifluoroacetamide	
3.	2-Propyl-tetrahydrofuran	3.	Hexadecamethylheptasiloxane	
4.	Octanal	4.	Octadecamethyloctasiloxane	
5.	2-Chlorocyclohexanol			
6.	Nonanal			
7.	Decanal			
8.	(Z) 2-Decenal			
9.	Methyl isohexadecanoate			
10.	Eicosanoic acid			
11.	Dibutyl phthalate			
12.	Ethyl hexadecanoate			
13.	(E) 2-Tetradecen-1-ol			
14.	(E) 9-Octadecenoic acid ethyl ester			
15.	Ethyl docosanoate			

GCMS profile from Alstonville (T. lepidota) and Illawarra flame (B. acerifolius) hexane extracts.

Reference*

*The reference corresponds to the manuscript.

- [12] H.M. Sirat, M.F. Rezali, Z. Ujang, J Agric Food Chem. 2010;58(19), 0404-9.
- [14] K. Kazuma, N. Noda, M. Suzuki, Phytochem. 2003;62(2), 229-37.
- [15] K. Hosokawa, Y. Fukunaga, E. Fukushi, J. Kawabata, Phytochem. 1995;40(2), 567-71.
- [16] S. Klaiklay, Y. Sukpondma, V. Rukachaisirikul, N. Hutadilok-Towatana, K. Chareonrat, Can. J. Chem. 2011;89(4), 461-4.
- [17] D. Tarbeeva, S. Fedoreev, M. Veselova, A. Kalinovskii, P. Gorovoi, O. Vishchuk, Chem Nat Comp. 2015;51(3), 451-5.
- [19] I.O. Vvedenskaya, R.T. Rosen, J.E. Guido, D.J. Russell, K.A Mills, N. Vorsa, J Agric Food Chem. 2004;52(2), 188-95.
- [20] N. Terahara, H. Suzuki, K. Toki, H. Kuwano, N. Saito, T. Honda, J. Nat. Prod. 1993;56(3), 335-40.