Supplementary Material

Two different barium(II) 2D coordination polymers constructed by pyrazine-2,3dicarboxylate: synthesis, crystal structures and thermal decomposition to barium(II) carbonate nanoparticles

Masoumeh Tabatabaee^a*, Boris-Marko Kukovec^b, Saeed Amjad^a, Masoud R. Shishebor^a

^aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran ^bLaboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

*Corresponding author:

M. Tabatabaee Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran E-mail: <u>tabatabaee@iauyazd.ac.ir</u> Fax: +983518223313 Phone: +983518117582

X-ray Crystallographic Analysis

The X-ray diffraction data were corrected for Lorentz-polarization factor and scaled for the absorption effects by multi-scan using SORTAV [a] for **1** and SADABS [b] for **2**.

The structure of **1** was refined as a three-component twin (BASF instruction 0.24808 0.10272). The positions of the hydrogen atoms belonging to the Csp² carbon atoms were geometrically optimized applying the riding model (Csp²–H, 0.95 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$). The positions of hydrogen atoms belonging to the water molecules in **1** were also geometrically optimized applying the riding model (O–H, 0.84 Å, $U_{iso}(H) = 1.5 U_{eq}(O)$). The positions of hydrogen atoms belonging to the water molecules and to the carboxylic groups in **2** were found in the difference Fourier maps and O–H distances were restrained to the average value of 0.84 Å, using SHELXL-97 DFIX instruction. The isotropic $U_{iso}(H)$ values for these H atoms were fixed at the same time ($U_{iso}(H) = 1.2U_{eq}(O)$).

The affirmation of the chosen space groups and the analysis of molecular geometry and hydrogen bonds were performed by PLATON [c].

[a] R. H. Blessing, ActaCrystallogr. A51 (1995) 33.

[b] G.M. Sheldrick, SADABS, University of Göttingen, Germany, 1996.

[c] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.

1									
Bond angles									
O6 ⁱⁱ –Ba1–O4	126.0(2)	O8 ^{vi} –Ba1–O4	153.20(6)						
O6 ⁱⁱ –Ba1–O7 ⁱⁱⁱ	66.9(2)	O8 ^{vi} –Ba1–O1	70.48(6)						
O4–Ba1–O7 ⁱⁱⁱ	166.3(2)	O4–Ba1–O1	135.68(6)						
O6 ⁱⁱ –Ba1–O2 ⁱ	74.3(2)	O8 ^{vi} –Ba1–O3	88.43(6)						
O4–Ba1–O2 ⁱ	125.5(2)	O4–Ba1–O3	72.64(6)						
O7 ⁱⁱⁱ –Ba1–O2 ⁱ	59.1(2)	O1–Ba1–O3	121.84(6)						
O6 ⁱⁱ –Ba1–O2	139.8(2)	O8 ^{vi} –Ba1–O2	135.94(6)						
O4–Ba1–O2	93.5(2)	O4–Ba1–O2	70.73(6)						
O7 ⁱⁱⁱ –Ba1–O2	74.7(2)	O1–Ba1–O2	65.59(6)						
O2 ⁱ -Ba1-O2	76.54(9)	O3–Ba1–O2	117.28(6)						
O6 ⁱⁱ –Ba1–O5 ⁱⁱ	64.0(2)	O8 ^{vi} –Ba1–O8 ^v	113.48(4)						
O4–Ba1–O5 ⁱⁱ	75.3(2)	O4–Ba1–O8 ^v	71.86(5)						
O7 ⁱⁱⁱ –Ba1–O5 ⁱⁱ	117.6(2)	O1–Ba1–O8 ^v	101.92(6)						
O2 ⁱ -Ba1-O5 ⁱⁱ	72.2(1)	O3–Ba1–O8 ^v	135.84(5)						
O2–Ba1–O5 ⁱⁱ	130.2(1)	O2–Ba1–O8 ^v	73.69(5)						
O6 ⁱⁱ –Ba1–O1	72.6(2)	O8 ^{vi} –Ba1–O10 ^{vii}	69.02(5)						
O4-Ba1-O1	102.7(2)	O4-Ba1-O10 ^{vii}	85.33(5)						
O7 ⁱⁱⁱ –Ba1–O1	75.5(2)	O1-Ba1-O10 ^{vii}	138.96(6)						
O2 ⁱ –Ba1–O1	131.4(2)	O3–Ba1–O10 ^{vii}	63.39(5)						
O2-Ba1-O1	109.0(2)	O2-Ba1-O10vii	153.43(5)						
O5 ⁱⁱ –Ba1–O1	120.7(2)	O8 ^v –Ba1–O10 ^{vii}	88.29(5)						
O6 ⁱⁱ –Ba1–O7 ^{iv}	136.2(2)	O8 ^{vi} –Ba1–O4 ^v	69.64(5)						
O4–Ba1–O7 ^{iv}	70.0(2)	O4–Ba1–O4 ^v	114.81(4)						
O7 ⁱⁱⁱ –Ba1–O7 ^{iv}	97.5(1)	O1–Ba1–O4 ^v	79.81(6)						
O2 ⁱ -Ba1-O7 ^{iv}	134.2(2)	O3–Ba1–O4 ^v	142.70(5)						
O2–Ba1–O7 ^{iv}	58.6(2)	O2–Ba1–O4 ^v	98.96(5)						
O5 ⁱⁱ –Ba1–O7 ^{iv}	144.8(2)	O8 ^v -Ba1-O4 ^v	44.67(5)						
O1–Ba1–O7 ^{iv}	63.8(2)	O10 ^{vii} –Ba1–O4 ^v	80.37(5)						
O6 ⁱⁱ –Ba1–O3	123.2(2)	O8 ^{vi} –Ba1–N1	94.01(6)						
O4-Ba1-O3	62.8(2)	O4–Ba1–N1	90.46(6)						
O7 ⁱⁱⁱ –Ba1–O3	116.1(2)	O1–Ba1–N1	72.63(6)						
O2 ⁱ –Ba1–O3	64.7(1)	O3–Ba1–N1	55.00(5)						
O2-Ba1-O3	64.8(1)	O2–Ba1–N1	76.27(6)						
O5 ⁱⁱ –Ba1–O3	67.1(2)	O8 ^v –Ba1–N1	148.80(6)						
O1–Ba1–O3	162.5(2)	O10 ^{vii} –Ba1–N1	116.39(5)						
O7 ^{iv} –Ba1–O3	100.5(2)	O4 ^v –Ba1–N1	151.52(5)						
O6 ⁱⁱ –Ba1–N1	76.1(2)								
O4–Ba1–N1	55.7(2)								
O7 ⁱⁱⁱ –Ba1–N1	131.7(2)								
O2 ⁱ –Ba1–N1	137.4(2)								
O2–Ba1–N1	142.3(2)								
O5 ⁱⁱ –Ba1–N1	67.5(2)								
O1–Ba1–N1	64.3(2)								
O7 ^{iv} –Ba1–N1	88.2(2)								
O3–Ba1–N1	109.7(2)								

Table S1. Selected bond angles (°) for 1 and 2.

Symmetry codes (i): x, -y+3/2, z+1/2; (ii): x, -y+1/2, z+1/2; (iii): x, y+1, z; (iv): x, -y+1/2, z-1/2; (v): -x+1, y-1/2, -z+1/2; (vi): x, y-1, z; (vii): -x+1, -y+1, -z.

	D–H···A	<i>d</i> (D–H)/Å	d(H…A)/Å	$d(D\cdots A)/Å$	$\angle (D - H \cdots A)/^{\circ}$	Symmetry code on A
1						
	O2-H21O5	0.84	2.21	3.042(7)	173.8	-x+1, -y+1, -z
	O2-H21…O4	0.84	2.43	2.976(7)	123.6	-x+1, -y+1, -z
	O2-H22…O3	0.82	2.11	2.852(7)	149.9	-x+1, -y+1, -z
	O3-H31O4	0.84	1.98	2.776(7)	158.1	-x+1, -y+1, -z
	O3–H31…O3	0.84	2.53	2.95(1)	111.6	-x+1, -y+1, -z
	O3–H32…O5	0.83	2.04	2.829(8)	158.6	-x+1, y+1/2, -z+1/2
	O1-H11N2	0.85	2.24	2.984(8)	147.6	x, -y+1/2, z-1/2
	O1-H12…O6	0.83	2.08	2.747(7)	137.3	x, y+1, z
2						
	O9–H91…O3	0.85(2)	1.69(2)	2.505(3)	162(3)	-x+1, -y+1, -z
	O7-H71…O12	0.82(2)	1.76(2)	2.546(3)	162(3)	x, y, z
	O1-H11O5	0.83(2)	2.02(2)	2.817(3)	160(3)	x, -y+1/2, z+1/2
	O1-H12…O11	0.83(2)	2.09(2)	2.900(3)	165(3)	x, y-1, z
	O2-H21…O10	0.83(2)	2.03(2)	2.853(3)	174(3)	x, -y+3/2, z+1/2
	O2-H22…O5	0.84(2)	2.03(2)	2.868(3)	170(3)	x, -y+1/2, z+1/2
	O11-H111O2	0.84(2)	2.05(2)	2.857(3)	162(3)	x, y, z
	O11-H112…N3	0.83(2)	1.96(2)	2.788(3)	171(4)	x, y, z
	O12-H121O11	0.83(2)	1.89(2)	2.717(3)	174(3)	x, -y+3/2, z-1/2
	O12-H122····O6	0.83(2)	1.92(2)	2.751(3)	174(3)	-x, y+1/2, -z-1/2

 Table S2. Hydrogen bond geometry for 1 and 2.

Fig. S1. FTIR spectrum of $\{[Ba(\mu-H_2O)(H_2O)_2(\mu-pyzdc)]\}_n(1)$

Fig. S2. FTIR spectrum of $\{[Ba(H_2O)_2(\mu-Hpyzdc)(Hpyzdc)] \cdot 2H_2O\}_n$ (2)

Fig. S3. TG/DTA curve of $\{[Ba(\mu-H_2O)(H_2O)_2(\mu-pyzdc)]\}_n(1)$

Fig. S4. TG/DTA curve of $\{[Ba(H_2O)_2(\mu-Hpyzdc)(Hpyzdc)] \cdot 2H_2O\}_n$ (2)