Supplementary Material

Two different barium(II) 2D coordination polymers constructed by pyrazine-2,3dicarboxylate: synthesis, crystal structures and thermal decomposition to barium(II) carbonate nanoparticles

Masoumeh Tabatabaee ${ }^{\text {a* }}$, Boris-Marko Kukovec ${ }^{\text {b }}$, Saeed Amjad ${ }^{\text {a }}$, Masoud R. Shishebor ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
${ }^{b}$ Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

*Corresponding author:

M. Tabatabaee

Department of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran
E-mail: tabatabaee@iauyazd.ac.ir
Fax: +983518223313
Phone: +983518117582

X-ray Crystallographic Analysis

The X-ray diffraction data were corrected for Lorentz-polarization factor and scaled for the absorption effects by multi-scan using SORTAV [a] for $\mathbf{1}$ and SADABS [b] for $\mathbf{2}$.

The structure of $\mathbf{1}$ was refined as a three-component twin (BASF instruction 0.24808 0.10272). The positions of the hydrogen atoms belonging to the Csp^{2} carbon atoms were geometrically optimized applying the riding model ($\mathrm{Csp}^{2}-\mathrm{H}, 0.95 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$). The positions of hydrogen atoms belonging to the water molecules in $\mathbf{1}$ were also geometrically optimized applying the riding model ($\mathrm{O}-\mathrm{H}, 0.84 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$). The positions of hydrogen atoms belonging to the water molecules and to the carboxylic groups in 2 were found in the difference Fourier maps and O-H distances were restrained to the average value of $0.84 \AA$, using SHELXL-97 DFIX instruction. The isotropic $U_{\text {iso }}(\mathrm{H})$ values for these H atoms were fixed at the same time $\left(U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right)$.

The affirmation of the chosen space groups and the analysis of molecular geometry and hydrogen bonds were performed by PLATON [c].
[a] R. H. Blessing, ActaCrystallogr. A51 (1995) 33.
[b] G.M. Sheldrick, SADABS, University of Göttingen, Germany, 1996.
[c] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.

Table S1. Selected bond angles (${ }^{\circ}$) for $\mathbf{1}$ and 2.

1		2	
Bond angles			
O6 ${ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 4$	126.0(2)	O8 ${ }^{\text {vi }}-\mathrm{Ba} 1-\mathrm{O} 4$	153.20(6)
O6 ${ }^{\text {ii }}-\mathrm{Ba} 1-07{ }^{\text {iii }}$	66.9(2)	O8 ${ }^{\text {vi }}$-Ba1-O1	70.48(6)
O4-Ba1-O7 ${ }^{\text {iii }}$	166.3(2)	O4-Ba1-O1	135.68(6)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	74.3(2)	O8 ${ }^{\text {vi }}-\mathrm{Ba} 1-\mathrm{O} 3$	88.43(6)
O4-Ba1-O2 ${ }^{\text {i }}$	125.5(2)	O4-Ba1-O3	72.64(6)
O7iii-Ba1-O2 ${ }^{\text {i }}$	59.1(2)	O1-Ba1-O3	121.84(6)
O6ii-Ba1-O2	139.8(2)	O8 ${ }^{\text {vi }}$ - $\mathrm{Ba} 1-\mathrm{O} 2$	135.94(6)
O4-Ba1-O2	93.5(2)	O4-Ba1-O2	70.73(6)
O7iii-Ba1-O2	74.7(2)	O1-Ba1-O2	65.59(6)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2$	76.54(9)	O3-Ba1-O2	117.28(6)
O6 ${ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 5^{\mathrm{ii}}$	64.0(2)	O8 ${ }^{\text {vi}}-\mathrm{Ba} 1-08{ }^{\text {v }}$	113.48(4)
O4-Ba1-O5 ${ }^{\text {ii }}$	75.3(2)	O4-Ba1-08 ${ }^{\text {v }}$	71.86(5)
O7iii-Ba1-O5 ${ }^{\text {ii }}$	117.6(2)	O1-Ba1-08 ${ }^{\text {v }}$	101.92(6)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 5^{\mathrm{ii}}$	72.2(1)	O3-Ba1-O8 ${ }^{\text {v }}$	135.84(5)
O2-Ba1-O5 ${ }^{\text {ii }}$	130.2(1)	O2-Ba1-08 ${ }^{\text {v }}$	73.69(5)
O6 ${ }^{\text {ii }}$-Ba1-01	72.6(2)	O8 ${ }^{\text {vi}}-\mathrm{Ba} 1-\mathrm{O} 10^{\text {vii }}$	69.02(5)
O4-Ba1-O1	102.7(2)	O4-Ba1-O10 ${ }^{\text {vii }}$	85.33(5)
O7iii-Ba1-01	75.5(2)	O1-Ba1-O10 ${ }^{\text {vii }}$	138.96(6)
O2 ${ }^{\text {i}}-\mathrm{Ba} 1-\mathrm{O} 1$	131.4(2)	O3-Ba1-O10 ${ }^{\text {vii }}$	63.39(5)
O2-Ba1-O1	109.0(2)	O2-Ba1-O10 ${ }^{\text {vii }}$	153.43(5)
O5ii-Ba1-O1	120.7(2)	O8v-Ba1-O10 ${ }^{\text {vii }}$	88.29(5)
O6 ${ }^{\text {iii-Ba1-O7 }}{ }^{\text {iv }}$	136.2(2)	O8 ${ }^{\text {vi }}-\mathrm{Ba} 1-\mathrm{O} 4^{\text {v }}$	69.64(5)
O4-Ba1-O7 ${ }^{\text {iv }}$	$70.0(2)$	O4-Ba1-O4 ${ }^{\text {v }}$	114.81(4)
O7iii-Ba1-O7 ${ }^{\text {iv }}$	97.5(1)	O1-Ba1-O4 ${ }^{\text {v }}$	79.81(6)
O2 ${ }^{\text {i }}$-Ba1-O7 ${ }^{\text {iv }}$	134.2(2)	O3-Ba1-O4 ${ }^{\text {v }}$	142.70(5)
O2-Ba1-O7 ${ }^{\text {iv }}$	58.6(2)	O2-Ba1-O4 ${ }^{\text {v }}$	98.96(5)
O5 ${ }^{\text {iii-Ba1-O7 }}{ }^{\text {iv }}$	144.8(2)	O8--Ba1-O4 ${ }^{\text {v }}$	44.67(5)
O1-Ba1-O7 ${ }^{\text {iv }}$	63.8(2)	O10 ${ }^{\text {vii-Ba1-O4 }}$	80.37(5)
O6ii-Ba1-O3	123.2(2)	O8 ${ }^{\text {vi }}-\mathrm{Ba} 1-\mathrm{N} 1$	94.01(6)
O4-Ba1-O3	62.8(2)	O4-Ba1-N1	90.46(6)
O7iii-Ba1-O3	116.1(2)	O1-Ba1-N1	72.63(6)
O2 ${ }^{\text {i }}$-Ba1-O3	64.7(1)	O3-Ba1-N1	55.00(5)
O2-Ba1-O3	64.8(1)	O2-Ba1-N1	76.27(6)
O5 ${ }^{\text {ii }}$-Ba1-O3	67.1(2)	O8*-Ba1-N1	148.80(6)
O1-Ba1-O3	162.5(2)	O10 ${ }^{\text {vii-Ba1-N1 }}$	116.39(5)
O7 ${ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 3$	100.5(2)	O4 ${ }^{\text {v }}$ - $\mathrm{Ba} 1-\mathrm{N} 1$	151.52(5)
O6 ${ }^{\text {ii }}$-Ba1-N1	76.1(2)		
O4-Ba1-N1	55.7(2)		
O7iii-Ba1-N1	131.7(2)		
O2 ${ }^{\text {i }}$-Ba1-N1	137.4(2)		
O2-Ba1-N1	142.3(2)		
O5ii-Ba1-N1	67.5(2)		
O1-Ba1-N1	64.3(2)		
O7 ${ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{N} 1$	88.2(2)		
O3-Ba1-N1	109.7(2)		

Symmetry codes (i): x, $-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$; (ii): $\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2$; (iii): $\mathrm{x}, \mathrm{y}+1, \mathrm{z}$; (iv): $\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2$; (v): $-x+1, y-1 / 2,-z+1 / 2$; (vi): $x, y-1, z ;(v i i):-x+1,-y+1,-z$.

Table S2. Hydrogen bond geometry for $\mathbf{1}$ and 2.

D-H...A	$d(\mathrm{D}-\mathrm{H}) / \AA$	$d(\mathrm{H} \cdots \mathrm{A}) / \AA$	$d(\mathrm{D} \cdots \mathrm{A}) / \AA$	$\angle(\mathrm{D}-\mathrm{H} \cdots \mathrm{A}) /^{\circ}$	Symmetry code on A
1					
O2-H21… 5	0.84	2.21	3.042(7)	173.8	-x+1, -y+1, -z
O2-H21..O4	0.84	2.43	2.976(7)	123.6	-x+1, -y+1, -z
O2-H22...O3	0.82	2.11	2.852(7)	149.9	-x+1, -y+1, -z
O3-H31… 4	0.84	1.98	2.776(7)	158.1	-x+1, -y+1, -z
O3-H31..O3	0.84	2.53	2.95(1)	111.6	-x+1, -y+1, -z
O3-H32 ..O5	0.83	2.04	2.829(8)	158.6	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$
O1-H11..N2	0.85	2.24	2.984(8)	147.6	$\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2$
O1-H12 ..O6	0.83	2.08	2.747(7)	137.3	$\mathrm{x}, \mathrm{y}+1, \mathrm{z}$
2					
O9-H91...O3	0.85(2)	1.69(2)	2.505(3)	162(3)	-x+1, -y+1, -z
O7-H71..O12	0.82(2)	1.76(2)	2.546(3)	162(3)	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
O1-H11‥O5	0.83(2)	2.02(2)	2.817(3)	160(3)	$\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2$
O1-H12 \cdots O11	0.83(2)	2.09(2)	2.900(3)	165(3)	$\mathrm{x}, \mathrm{y}-1, \mathrm{z}$
O2-H21 \cdots O10	0.83(2)	2.03(2)	2.853(3)	174(3)	$\mathrm{x},-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$
O2-H22 \cdots O5	0.84(2)	2.03(2)	2.868(3)	170(3)	$\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2$
O11-H111...O2	0.84(2)	2.05(2)	2.857(3)	162(3)	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
O11-H112 \cdots N3	0.83(2)	1.96(2)	2.788(3)	171(4)	$\mathrm{x}, \mathrm{y}, \mathrm{z}$
O12-H121 \cdots O11	0.83(2)	1.89(2)	2.717(3)	174(3)	$\mathrm{x},-\mathrm{y}+3 / 2, \mathrm{z}-1 / 2$
O12-H122 ..O6	0.83(2)	1.92(2)	2.751(3)	174(3)	-x, y+1/2, -z-1/2

Fig. S1. FTIR spectrum of $\left\{\left[\mathrm{Ba}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu-\text { pyzdc })\right]\right\}_{n}(\mathbf{1})$

Fig. S2. FTIR spectrum of $\left\{\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu \text {-Hpyzdc) }(\mathrm{Hpyzdc})] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}\right.$ (2)

Fig. S3. TG/DTA curve of $\left\{\left[\mathrm{Ba}\left(\mu-\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu-\text { pyzdc })\right]\right\}_{n}(\mathbf{1})$

Fig. S4. TG/DTA curve of $\left\{\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu \text { - } \mathrm{Hpyzdc})(\mathrm{Hpyzdc})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{2})$

