10.1071/CH16321_AC
©CSIRO 2017
Australian Journal of Chemistry 70(1), 79-89

Supplementary Material

Organometallic Complexes for Non-Linear Optics. 59. Syntheses and Optical Properties of Some Octupolar (N -Heterocyclic Carbene)gold Complexes

Gang Liu, ${ }^{\text {A }}$ Cristóbal Quintana, ${ }^{\text {B }}$ Genmiao Wang, ${ }^{\text {B }}$ Mahesh S. Kodikara, ${ }^{\text {B }}$ Jun Du, ${ }^{\text {B }}$ Rob Stranger, ${ }^{\mathrm{B}}$ Chi Zhang, ${ }^{\mathrm{A}}$ Marie P. Cifuentes, ${ }^{\mathrm{A}, \mathrm{B}}$ and Mark G. Humphrey ${ }^{\mathrm{A}, \mathrm{B}, \mathrm{C}}$
${ }^{\text {A }}$ School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
${ }^{B}$ Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
${ }^{\text {C }}$ Corresponding author. Email: mark.humphrey@jiangnan.edu.cn; mark.humphrey@anu.edu.au

Contents:	Page
Syntheses	2
NMR spectra	8
DFT calculations	22
References	32

Syntheses

Synthesis of 1,3,5-(4-I-3,5-Et ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (1)
$1,3,5-(\mathrm{HC} \equiv \mathrm{C})_{3} \mathrm{C}_{6} \mathrm{H}_{3}(0.900 \mathrm{~g}, 5.99 \mathrm{mmol})$ and $2,6-\mathrm{Et}_{2}-1,4-\mathrm{I}_{2} \mathrm{C}_{6} \mathrm{H}_{2}(7.32 \mathrm{~g}, 19.0 \mathrm{mmol})$ were dissolved in triethylamine $(60 \mathrm{~mL})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.250 \mathrm{~g}, 0.360 \mathrm{mmol})$ and $\mathrm{CuI}(0.090 \mathrm{~g}, 0.48 \mathrm{mmol})$ were added. The mixture was then stirred at $80^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to cool to room temperature, filtered to remove the precipitate, and the solvent was removed under reduced pressure. The resulting residue was passed through a short pad of silica using hexane as eluent. Removal of the solvent afforded the crude product, and crystallization from hexane provided 1,3,5-(4-I-3,5-Et $\mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (1) as a white solid ($4.260 \mathrm{~g}, 4.61 \mathrm{mmol}, 77 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{C} \equiv \mathrm{C}) 2161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (s, $3 \mathrm{H}, \mathrm{CH}$ aromatic), 7.21 (s, $6 \mathrm{H}, \mathrm{CH}$ aromatic), 2.81 (q, $J=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.24\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.55,134.04,128.69,124.01,122.57,108.05,90.12,88.22,35.42,14.47 \mathrm{ppm} ;$ HRMS (ESI): m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{I}_{3}$: 924.0186; found 924.0186. Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{I}_{3}$: C $54.57, \mathrm{H}$ 4.25. Found: C 54.61, H 4.20\%.

Synthesis of $1,3,5-\left\{(4-H C \equiv C)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}$ (2)

1,3,5-(4-I-3,5-Et ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(1,2.000 \mathrm{~g}, 2.16 \mathrm{mmol})$ was dissolved in $\mathrm{NEt}_{3}(60 \mathrm{~mL})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.130 \mathrm{~g}, 0.11 \mathrm{mmol}), \mathrm{CuI}(0.030 \mathrm{~g}, 0.16 \mathrm{mmol})$ and trimethylsilylacetylene $(1.20 \mathrm{~mL}, 8.57$ mmol) were added in sequence under a N_{2} atmosphere. After stirring at $50^{\circ} \mathrm{C}$ overnight, the reaction mixture was allowed to cool to room temperature, filtered to remove the precipitate, and the solvent was removed under reduced pressure. This product proved difficult to purify by chromatography, and so was reacted on without further purification. The residue was dissolved in THF (30 mL), [$\left.{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]$ F (1.0 M in THF, $8 \mathrm{~mL}, 8 \mathrm{mmol}$) was added, and the mixture was stirred at ambient temperature for 15 min. After removal of the solvent, the residue was passed through a short column using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8:1) as eluent. Reduction in volume of the solvent afforded $1,3,5-\left\{(4-H C \equiv C)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}$ (2) as a light-yellow solid ($0.810 \mathrm{~g}, 1.30 \mathrm{mmol}, 60 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (s, $3 \mathrm{H}, \mathrm{CH}$ aromatic), 7.28 ($\mathrm{s}, 6 \mathrm{H}$, CH aromatic), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 2.87 (q, $J=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.32,134.10,128.47,124.04,122.69,121.17,90.78$, 88.78, 86.25, 80.24, 27.74, 14.56 ppm.

Synthesis of 1,3,5-(4-\{4-Me $\left.3 \mathrm{SiC}_{\equiv} \mathrm{CC}_{6} \mathrm{H}_{4}-1-C \equiv C\right\}-3,5-E t_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (3)
$1,3,5-\left\{(4-\mathrm{HC} \equiv \mathrm{C})-2,6-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(2,0.440 \mathrm{~g}, 0.710 \mathrm{mmol})\right.$ and $4-\mathrm{IC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CSiMe}_{3}$ ($0.660 \mathrm{~g}, 2.20 \mathrm{mmol}$) were dissolved in $\mathrm{NEt}_{3} / \mathrm{THF}(30 \mathrm{~mL} / 30 \mathrm{~mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{CuI}(15 \mathrm{mg}, 0.079 \mathrm{mmol})$ were added. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to cool to room temperature, filtered to remove the precipitate, and the solvent was removed under reduced pressure. The residue was passed through a short column using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1) as eluent. Reduction in volume of the solvent afforded 1,3,5-(4-\{4-Me $\left.\left.{ }_{3} S i C \equiv C C_{6} H_{4}-1-C \equiv C\right\}-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right)_{3} C_{6} H_{3}$ (3) as a light yellow solid (0.580 g , $0.510 \mathrm{mmol}, 72 \%)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2155 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 367$ [19.8], 350 [22.2], 343 [22.4]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}$ aromatic), 7.46 (s, 12H, CH aromatic), 7.29 (s, $6 \mathrm{H}, \mathrm{CH}$ aromatic), $2.90\left(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.33\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.27(\mathrm{~s}, 27 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): $\delta 146.69,134.13,132.03,131.19,128.64,124.15$, 123.71, 123.07, 122.56, 122.04, 104.73, 98.37, 96.43, 91.03, 88.98, 88.41, 27.98, 14.64, 0.001 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{81} \mathrm{H}_{78} \mathrm{Si}_{3}$: 1134.5411; found 1134.5413. Anal. Calc. for $\mathrm{C}_{81} \mathrm{H}_{78} \mathrm{Si}_{3}$: C 85.66 , H 6.92. Found: C 85.50, H 6.98\%.

Synthesis of 1,3,5-\{4-(4-HC三CC $\left.\left.{ }_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}$ (4)

$1,3,5-\left\{4-\left(4-\mathrm{Me}_{3} \mathrm{SiC}_{\mathrm{S}}=\mathrm{CC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)-2,6-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ ($3,0.570 \mathrm{~g}, 0.500 \mathrm{mmol}$) was dissolved in THF (30 mL), [$\left.{ }^{\mathrm{B}} \mathrm{Bu}_{4} \mathrm{~N}\right]$ F (1.0 M in THF, $3 \mathrm{~mL}, 3 \mathrm{mmol}$) was added, and the resulting solution was stirred at ambient temperature for 1 h . After removing the solvent, the residue was passed through a small pad of silica using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$ as eluent. Reduction in volume of the solvent afforded 1,3,5-\{4-(4-HC $\left.\left.\equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} \mathrm{H}_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}$ (4) as a light-yellow solid (0.430 g, $0.470 \mathrm{mmol}, 94 \%)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2106 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 363$ [16.5], $340(18.9] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (s, $3 \mathrm{H}, \mathrm{CH}$ aromatic), 7.51 (s, $12 \mathrm{H}, \mathrm{CH}$ aromatic), 7.31 (s, $6 \mathrm{H}, \mathrm{CH}$ aromatic), 3.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}$), 2.93 (q, $J=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.35\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.66,134.08,132.15,131.23,128.59,124.07,122.55,121.94$, 121.90, 98.07, 90.95, 88.94, 88.42, 83.30, 79.00, 27.93, 14.59 ppm; HRMS (ESI): m/z calcd for $\mathrm{C}_{72} \mathrm{H}_{54}$: 918.4226; found 918.4255.

Synthesis of $1,3,5-\left\{4-\left(4-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-C \equiv C-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-C \equiv C\right)-3,5-E t_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C} \equiv C\right\}_{3} C_{6} \mathrm{H}_{3}$ (5)
$1,3,5-\left(4-\mathrm{HC} \equiv \mathrm{C}-3,5-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3} \quad(2, \quad 0.440 \quad \mathrm{~g}, \quad 0.710 \quad \mathrm{mmol})$ and 4-Me ${ }_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{I}(0.880 \mathrm{~g}, 2.20 \mathrm{mmol})$ were dissolved in $\mathrm{NEt}_{3} / \mathrm{THF}(30 \mathrm{~mL} / 30$ $\mathrm{mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{CuI}(15 \mathrm{mg}, 0.079 \mathrm{mmol})$ were added. The mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to cool to room temperature, filtered to remove the precipitate, and the solvent was then removed under reduced pressure. The residue was passed through a short column using hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ as eluent. Reduction in volume of the solvent afforded $\quad 1,3,5-\left\{4-\left(4-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-C \equiv C-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2} C \equiv C\right\}_{3} C_{6} H_{3} \quad$ (5) as a light-yellow solid ($0.660 \mathrm{~g}, 0.460 \mathrm{mmol}, 64 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2159 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 356$ [30.5]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (s, $3 \mathrm{H}, \mathrm{CH}$ aromatic), 7.52-7.44 (m, $24 \mathrm{H}, \mathrm{CH}$ aromatic), 7.30 (s, $6 \mathrm{H}, \mathrm{CH}$ aromatic), 2.92 (q, $J=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.34 (t, $J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.26 (s, 27H, Si $\left.\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.71,134.16,132.02,131.70,131.50$, 131.40, 128.66, 124.15, 123.71, 123.23, 123.14, 122.94, 122.59, 122.04, 104.68, 98.42, 96.57, 91.12, 91.06, 89.03, 88.54, 28.01, 14.68, 0.01 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{105} \mathrm{H}_{90} \mathrm{Si}_{3}$: 1434.6350; found 1434.6359.

Synthesis of 1,3,5-\{4-(4-HC $\left.\left.\equiv C_{6} H_{4}-1-C \equiv C-4-C_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right)_{3} C_{6} H_{3}$ (6)
$1,3,5-\left\{4-\left(4-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)-3,5-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right.$ (5, $0.660 \mathrm{~g}, 0.460$ mmol) was dissolved in THF (30 mL) and [$\left.{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{F}(1.0 \mathrm{M}$ in THF, $3 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added. The resulting solution was stirred at ambient temperature for 3 h . After removing the solvent, the residue was passed through a short pad of silica using hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$ as eluent. Reduction in volume of the solvent afforded $1,3,5-\left\{4-\left(4-H C \equiv C_{6} H_{4}-1-C \equiv C-4-C_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right)_{3} C_{6} H_{3}$ (6) as a light-yellow solid ($0.540 \mathrm{~g}, 0.440 \mathrm{mmol}, 96 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2108 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 354 [25.5]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68$ (s, 3H, CH aromatic); 7.52 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CH}$ aromatic), 7.49 (s, 12H, CH aromatic), 7.30 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}$ aromatic), 3.19 ($\mathrm{s}, 3 \mathrm{H}, H \mathrm{C} \equiv \mathrm{C}$), 2.92 (q, $J=7.5 \mathrm{~Hz}, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.34 (t, $J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.65,134.08$, 132.12, 131.65, 131.50, 131.32, 128.60, 124.09, 123.71, 123.51, 122.81, 122.53, 122.14, 121.97, 98.32, 91.10, 90.97, 90.77, 88.94, 88.50, 83.25, 79.05, 27.94, 14.59 ppm.

Preparation of aniline compounds 7-10

General procedure: the octupolar alkyne (1 mmol) and 4-iodo- N, N '-diphenylaniline ($1.450 \mathrm{~g}, 4.00$ mmol) were dissolved in $\mathrm{NEt}_{3} / \mathrm{THF}(30 \mathrm{~mL} / 30 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.092 \mathrm{~g}, 0.080 \mathrm{mmol})$ and CuI $(0.019 \mathrm{~g}, 0.10 \mathrm{mmol})$ were added. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ overnight. The reaction mixture was allowed to cool to room temperature, filtered to remove the precipitate, and the solvent was then removed under reduced pressure. The residue was passed through a short column using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ as eluent. Reduction in volume of the solvent afforded a yellow-green solid. Compounds 7-10 decomposed slowly over a period of days, precluding elemental analysis.

Synthesis of 1,3,5-(4-Ph2 $\mathrm{NC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (7)
7 was prepared by the general procedure. Yield: ($0.220 \mathrm{~g}, 0.250 \mathrm{mmol}, 25 \%)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2203 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 370$ [12.4]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (s, 3H, core CH aromatic), 7.37-7.28 (m, 18H, CH aromatic), 7.13-6.99 (m, 24H, CH aromatic); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 148.21,147.17,133.42,132.65,129.43,125.10,124.29,123.67,122.16,115.61,90.74$, 87.33; HRMS (ESI): m/z calcd for $\mathrm{C}_{66} \mathrm{H}_{45} \mathrm{~N}_{3}$: 879.3613; found: 879.3608.

Synthesis of 1,3,5-(4-Ph ${ }_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (8)

8 was prepared by the general procedure. Yield: $(0.190 \mathrm{~g}, 0.160 \mathrm{mmol}, 16 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2202 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 382 [15.4], 307 [11.6]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (s, 3H, core CH aromatic), 7.50 (s, 12H, CH aromatic), 7.39-7.26 (m, 18H, CH aromatic), 7.13-7.00 (m, $24 \mathrm{H}, \mathrm{CH}$ aromatic) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 148.17,147.13,134.12,132.60,131.61,131.42$,
129.42, 125.08, 123.98, 123.66, 122.72, 122.14, 122.09, 115.64, 91.97, 90.48, 89.41, 88.35 ppm ; HRMS (ESI): m/z calcd for $\mathrm{C}_{90} \mathrm{H}_{57} \mathrm{~N}_{3}$: 1179.4552; found: 1179.4590.

Synthesis
of
1,3,5-\{4-(4-Ph $\left.\left.{ }_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-1-C \equiv C-4-C_{6} H_{4}-1-C \equiv C-4-C_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}(\mathbf{1 0})$
10 was prepared by the general procedure. Yield: $(0.310 \mathrm{~g}, 0.159 \mathrm{mmol}, 16 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2206 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 378$ [30.1]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (s, 3 H , core CH aromatic), 7.52-7.28 (m, 48H, CH aromatic), 7.15-6.98 (m, $24 \mathrm{H}, \mathrm{CH}$ aromatic), 2.92 (q, $J=7.5 \mathrm{~Hz}$, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.34\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.14$, 147.12 , 146.62, 134.06, 132.58, 131.61, 131.54, 131.40, 131.32, 129.42, 128.58, 125.07, 124.07, $123.77,123.65,123.54,122.97,122.50,122.37,122.13,121.99,115.65,98.39,91.91,91.22,90.99$, 90.87, 88.95, 88.41, 88.44, 27.93, 14.60 ppm ; MS (MALDI) m / z calcd for $\mathrm{C}_{150} \mathrm{H}_{105} \mathrm{~N}_{3}$: 1947.83; found: 1947.77.

Preparation of NHC-Au acetylide complexes 11-14

General procedure: the alkyne (1 eq., 0.100 mmol) was dissolved in THF (50 mL) and potassium tert-butoxide ($0.138 \mathrm{~g}, 1.00 \mathrm{mmol}$) was added. The solution was then stirred at $80{ }^{\circ} \mathrm{C}$ for 0.5 h . $\mathrm{AuCl}\left(\mathrm{NHC}^{-} \mathrm{Pr}\right)(0.186 \mathrm{~g}, 0.300 \mathrm{mmol})$ was added, and the solution was stirred at $80^{\circ} \mathrm{C}$ overnight. The reaction mixture was filtered to remove the precipitate and the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the solution was slowly added dropwise to
stirring hexane (200 mL). The mixture was filtered and the white solid collected, washed with hexane, and dried.

Synthesis of 1,3,5-\{[(NHC- $\left.\left.\left.{ }^{i} \mathrm{Pr}\right) A u\right] C \equiv C\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (11)
The compound $1,3,5-\left\{\left[\left(N H C-{ }^{i} \operatorname{Pr}\right) A u\right] C \equiv C\right\}_{3} C_{6} H_{3}$ (11) has been reported previously, prepared from the $\mathrm{Au}(\mathrm{OH})\left(\mathrm{NHC}^{-} \mathrm{Pr}\right)$ precursor $(84 \%) .{ }^{1}$ In the present case, 11 was prepared by the general procedure with a similar yield to the earlier report. Yield: $(0.150 \mathrm{~g}, 0.080 \mathrm{mmol}, 80 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C}) 2106$ cm^{-1}; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 290 [7.7]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}$ aromatic), 7.27 (d, $J=8.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}$ aromatic), 7.10 (s, $6 \mathrm{H}, \mathrm{CH}$ imidazole), 6.96 (s, 3 H , core CH aromatic), $2.59\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 36 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.59,145.57,134.31,133.88,130.41,127.47$, 124.63, 124.12, 122.97, 103.92, 28.78, 24.54, 24.06 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{93} \mathrm{H}_{111} \mathrm{Au}_{3} \mathrm{~N}_{6}$: $1903.7945[\mathrm{M}+\mathrm{H}]^{+}$; found: 1903.7944.

Synthesis of $1,3,5-\left\{\left[\left(\mathrm{NHC}-{ }^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{Au}\right] \mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (12)
12 was prepared by the general procedure. Yield: ($0.165 \mathrm{~g}, 0.075 \mathrm{mmol}, 75 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{C} \equiv \mathrm{C}) 2109 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 346$ [14.1], 325 [16.2]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}$ aromatic), 7.47 (s, 3 H , core CH aromatic), 7.29 (d, $J=8.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}$ aromatic), 7.25 (s, 12H, CH aromatic), 7.12 (s, 6H, CH imidazole), $2.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38$ (d, J=7.0 Hz, $\left.36 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.21\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.91$, 145.62, 134.27, 133.57, 132.66, 132.18, 130.97, 130.51, 126.47, 124.18, 124.06, 123.20, 119.75, 103.59, 90.85, 88.52, 28.83, 24.61, 24.03 ppm ; HRMS (ESI): m/z calcd for $\mathrm{C}_{117} \mathrm{H}_{123} \mathrm{Au}_{3} \mathrm{~N}_{6}$: 2203.8884 $[\mathrm{M}+\mathrm{H}]^{+}$; found: 2203.9502.

Synthesis of 1,3,5-\{4-([(NHC- $\left.\left.\left.\left.{ }^{i} P r\right) A u\right] C \equiv C-4-C_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}$ (13)
13 was prepared by the general procedure. Yield: ($0.192 \mathrm{~g}, 0.072 \mathrm{mmol}, 72 \%)$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{C})$ $2109 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 362$ [20.1], 348 [21.3]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~s}, 3 \mathrm{H}$, core CH aromatic), $7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}$ aromatic), $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}$ aromatic), 7.28-7.27 ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}$ aromatic), 7.23 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}$ aromatic), 7.13 (s, $6 \mathrm{H}, \mathrm{CH}$ imidazole), 2.85 (q, $J=7.5 \mathrm{~Hz}$, $\left.12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.61\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.22\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.83$, 146.36, 145.63, 134.29, 133.94, 132.55, 132.25, 130.64, 130.52, 128.44, 126.26, 124.20, 124.08, 123.24, 122.49, 121.92, 120.56, 103.66, 99.33, 91.03, 88.67, 86.97, 28.84, 27.86, 24.64, 24.04, 14.54 ppm.

NMR spectra

1,3,5-(4-I-3,5-Et ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}_{3}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (1)

$1,3,5-\left\{4-\left(4-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)-3,5-E t_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(3)$

1,3,5-\{4-(4-HC $\left.\left.\equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)-3,5-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}(4)$

$1,3,5-\left\{4-\left(4-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-C \equiv C\right)-3,5-E t_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-C \equiv C\right\}_{3} C_{6} \mathrm{H}_{3}$ (5)

1,3,5-\{4-(4-HC $\left.\left.\equiv \mathrm{CC}_{6} \mathrm{H}_{4}-1-C \equiv C-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-C \equiv C\right)-3,5-E t_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-C \equiv C\right\}_{3} C_{6} \mathrm{H}_{3}$ (6)

| 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $\mathrm{f} 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1,3,5-(4-Ph $\left.{ }_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (7)

$1,3,5-\left(4-\mathrm{Ph}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{8})\right.$

$1,3,5-\left\{4-\left(4-\mathrm{Ph}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)-3,5-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv \mathrm{C}\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (9)

$1,3,5-\left\{4-\left(4-\mathrm{Ph}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}\right)-3,5-E t_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1-\mathrm{C} \equiv C\right\}_{3}$ $\mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{1 0)}$

$1,3,5-\left\{\left[\left(\mathrm{NHC}^{i} \mathrm{Pr}\right) \mathrm{Au}\right] \mathrm{C} \equiv \mathrm{C}\right\}_{3} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{1 1)}$

$1,3,5-\left\{\left[\left(\mathrm{NHC}{ }^{i} \mathrm{Pr}\right) \mathrm{Au}\right] \mathrm{C} \equiv \mathrm{C}-4-\mathrm{C}_{6} \mathrm{H}_{4}-1-\mathrm{C} \equiv \mathrm{C}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right.$ (12)

$1,3,5-\left\{4-\left(\left[\left(N H C^{i} \operatorname{Pr}\right) A u\right] C \equiv C-4-C_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C_{6} H_{3}$ (13)

$1,3,5-\left\{4-\left(\left[\left(N H C^{i} P r\right) A u\right] C \equiv C-4-C_{6} H_{4}-1-C \equiv C-4-C_{6} H_{4}-1-C \equiv C\right)-3,5-E t_{2} C_{6} H_{2}-1-C \equiv C\right\}_{3} C$ ${ }_{6} \mathrm{H}_{3}(\mathbf{1 4)}$

DFT calculations

We undertook density functional theory (DFT) and time-dependent (TD-DFT) calculations to rationalize the experimental optical properties. All models were constrained to either D_{3} (organic compounds) or $\mathrm{D}_{3 \mathrm{~h}}$ (organometallic complexes) symmetry. In addition, isopropyl (${ }^{(} \mathrm{Pr}$) groups of the NHC ligand in the laboratory gold complexes and ethyl substituents used as an aid to mitigate solubility issue in the laboratory compounds $\mathbf{9}, \mathbf{1 0}, \mathbf{1 3}$, and 14 were replaced with hydrogens for computational expediency. We constrained the dihedral angle between the planes of a substituted phenyl and the NHC group to 90°. Initial geometries were optimized using hybrid B3LYP ${ }^{1,2}$ functional. For TD-DFT calculations, the hybrid PBE1PBE ${ }^{3,4}$ (or PBE0) functional was employed. The 6-31G(d) (for optimization) and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ (for TD-DFT studies) basis sets were employed for main group elements. Gold was modelled using the SDD 5 basis set and associated pseudopotential. All calculations were performed using the Gaussian 09^{6} program package.

Figure S1. Calculated UV-Vis spectra of two different model conformations of 7, namely, $\mathbf{7}^{*}$ (all phenylene rings including core are co-planar) and $\mathbf{7}^{*}(\mathbf{4 5)}$ (dihedral angle between two planes of adjacent phenylene rings is constrained to 45°). The solid (red) lines show the experimental absorption spectra. Abbreviations: ε, molar extinction coefficient $\left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. v, wavenumbers (cm^{-1}). f , relative oscillator strengths.

Figure S2. Comparison of calculated UV-Vis data between two different conformations of $\mathbf{1 1}^{\mathbf{*}}$, namely, $\mathbf{1 1}^{*} \mathbf{(0)}$ (core ring and all NHC groups are co-planar) and $\mathbf{1 1}^{*} \mathbf{(9 0)}$ (dihedral angle between the planes of the core and each NHC ring is constrained to 90°). The solid (maroon) lines show the experimental absorption spectra and the vertical sticks display the calculated oscillator strengths. Abbreviation: ε, molar extinction coefficients $\left(10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. v, wavenumbers $\left(\mathrm{cm}^{-1}\right)$. f , relative oscillator strengths.

Figure S3. Selected frontier molecular orbital plots (0.015 e bohr ${ }^{\mathbf{3}}$) for $\mathbf{7}^{*}$ to $\mathbf{1 0}^{*}$ (top to bottom). Abbreviations: H, HOMO. L, LUMO.

Figure S4. Selected frontier molecular orbital plots (0.02 e bohr ${ }^{3}$) for $\mathbf{1 1}^{*} \mathbf{- 1 4}^{*}$ (top to bottom). Abbreviations: H, HOMO. L, LUMO.

References

1. Fortman, G. C., Poater, A., Levell, J. W., Gaillard, S., Slawin, A. M. Z., Samuel, I. D. W., Cavallo, L., Nolan, S. P., Dalton Trans. 2010, 39, 10382.
2. Becke, A. D., J. Chem. Phys. 1993, 98, 5648.
3. Lee, C., Yang, W., and Parr, R. G., Phys. Rev. B 1988, 37, 785.
4. Adamo, C., and Barone, V., J. Chem. Phys. 1999, 110, 6158.
5. Ernzerhof, M., and Scuseria, G. E., J. Chem. Phys. 1999, 110, 5029.
6. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., and Preuss, H., Theor. Chim. Acta 1990, 77, 123.
7. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V, Cioslowski, J., and Fox, D. J. Gaussian 09. Gaussian, Inc., Wallingford, CT, USA, 2009.
