SUPPLEMENTARY MATERIAL

Synthesis of Norfijimycin A with Activity against Mycobacterium tuberculosis

Alexander Stoye, ${ }^{\dagger}$ Gayathri Nagalingam, ${ }^{\ddagger}$ Warwick J. Britton, ${ }^{\ddagger}$ and Richard J. Payne ${ }^{*, t}$ \pm School of Chemistry and \ddagger Tuberculosis Research Program, Centenary Institute, and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia Fax: +61 29351 3329, Tel: +61 29351 5877, E-mail: richard.payne@sydney.edu.au

Contents

General Methods and Materials 2
General Procedures 3
General Procedure 1: Solid phase peptide synthesis 3
General Procedure 2: Iterative peptide assembly (Fmoc-SPPS) 4
Experimental and analytical data 5
(R)-Fmoc- N (Me)-Phg-OH (7) 5
Allyl 3-O-Allyloxypicolinate. 6
3-Allyloxypicolinic acid (12) 7
Alloc-Thr-OH 7
Alloc-Thr-O'Bu (6) 8
$\mathrm{O}-((\mathrm{R})-2-((((9 H$-fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-2-phenylacetyl)-N- ((allyloxy)carbonyl)-L-threonine (4) 9
Norfijimyin A (3) 10
Antimicrobial Screening: Resazurin Assay for Mtb 12
Mass Spectra and Chromatograms 13
NMR spectra 23
References 34

General Methods and Materials

General Methods and Materials

All reactions were carried out under an argon atmosphere and at room temperature $\left(23{ }^{\circ} \mathrm{C}\right)$ unless the reaction was performed under aqueous conditions or unless otherwise specified. Reactions undertaken at $-78{ }^{\circ} \mathrm{C}$ utilized a bath of dry ice and acetone. Reactions carried out at $0{ }^{\circ} \mathrm{C}$ employed a bath of water and ice. Anhydrous THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF, and MeCN were obtained using a PureSolv ${ }^{\circledR}$ solvent purification system (water $<10 \mathrm{ppm}$). Reactions were monitored by thin layer chromatography (TLC) on aluminium backed silica plates (Merck Silica Gel 60 F254). Visualisation of TLC plates was undertaken with an ultraviolet (UV) light at $\lambda=254 \mathrm{~nm}$ and staining with solutions of vanillin or phosphomolybdic acid (PMA), followed by exposure of the stained plates to heat. Silica flash column chromatography (Silica Gel $6040-63 \mu \mathrm{~m}$) was undertaken to purify crude reaction mixtures using solvents as specified. Separations were performed using a Biotage Isolera ${ }^{\circledR}$ purification system with a diode array detector and a fraction collector.

NMR spectra were obtained using a Bruker DRX 400 or DRX 500 at frequencies of 400 MHz or 500 MHz respectively in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{CN}$, or DMSO- d_{6}. Chemical shifts are reported in parts per million (ppm) and coupling constants in Hertz (Hz). The residual solvent peaks were used as internal standards $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26, \delta_{\mathrm{C}}=77.16 ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=3.31\right.$, $\left.\delta_{\mathrm{C}}=49.00 ; \mathrm{CD}_{3} \mathrm{CN}: \delta_{\mathrm{H}}=1.94, \delta_{\mathrm{C}}=118.26 / 1.32 ; \mathrm{DMSO}-d_{6}: \delta_{\mathrm{H}}=2.50, \delta_{\mathrm{C}}=39.52 \mathrm{ppm}\right){ }^{[1]}$. ${ }^{1} \mathrm{H}$ NMR data is reported as follows: Chemical shift values (ppm), multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant(s$)$ and relative integral. ${ }^{13}$ C NMR spectra were obtained using a Bruker DRX 300, DRX 400, or DRX 500 at 75.5 $\mathrm{MHz}, 100.6 \mathrm{MHz}$, or 125.8 MHz in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{CN}$, or DMSO- $d_{6} .{ }^{13} \mathrm{C}$ NMR data is reported as chemical shift values (ppm). In the case of diastereomeric mixtures, the signals of the major diastereomer are reported unless otherwise noted.

Mass spectra were recorded on a Shimadzu 2020 (ESI) mass spectrometer operating in positive mode. High resolution mass spectra were recorded on a Bruker-Daltronics Apex Ultra 7.0T Fourier transform (FTICR) mass spectrometer.

Optical rotations were measured on a Perkin-Elmer 341 polarimeter at a wavelenght of 589 nm .

IR spectra were recorded on a Bruker ALPHA FT-IR-spectrometer using a diamond ATR unit.

Melting points were determined with a SRS Optimelt melting point apparatus and are uncorrected.

Preparative RP-HPLC was performed using a Waters 600 Multisolvent Delivery System and Waters 500 pump with 2996 photodiode array detector. Programmable wavelength detector operating at $210-300 \mathrm{~nm}$. Compounds were purified using a XBridge BEH C_{18} $5 \mu \mathrm{~m}$ or a Sunfire $\mathrm{C}_{18}(19 \times 150 \mathrm{~mm}$ or $30 \times 150 \mathrm{~mm})$ column operating at total flow rates of $32.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ or $50.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ respectively. A mobile phase of 0.1% trifluoroacetic acid in water (Solvent A) and 0.1% trifluoroacetic acid in acetonitrile (Solvent B) was used in all cases.

LC/MS was performed on a Shimadzu UPLC/MS instrument consisting of a LC-M20A pump and a SPD-M30A diode array detector coupled to a Shimadzu 2020 mass spectrometer (ESI) operating in positive mode. Separations on the UPLC/MS system were performed using a Waters Acquity UPLC BEH C $\mathrm{C}_{18} 1.7 \mu \mathrm{~m}$ column $(2.1 \times 50 \mathrm{~mm}$ at a total flow rate of $0.60 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$. Separations were performed using a mobile phase of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B).

General Procedures

General Procedure 1: Solid phase peptide synthesis

Preloading 2-chlorotrityl chloride resin: 2-Chlorotrityl chloride resin was swollen in dry DCM for 30 min then washed with DCM ($5 \times 1 \mathrm{~mL}$). A solution of Fmoc-AA-OH and $i \operatorname{Pr}_{2} \mathrm{NEt}$ (2.0 equiv. relative to resin functionalization) in DCM (final concentration $100 \mu \mathrm{M}$ of amino acid) was added and the resin was shaken at rt for 16 h . The resin was washed with DMF $(5 \times 1 \mathrm{~mL})$ and $\operatorname{DCM}(5 \times 1 \mathrm{~mL})$. The resin was capped by treating with a solution of $\mathrm{DCM} / \mathrm{CH}_{3} \mathrm{OH} / i \mathrm{Pr}_{2} \mathrm{NEt}(17: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL})$ for 1 h and washed with DMF $(5 \times 1$ mL), DCM ($5 \times 1 \mathrm{~mL}$), and DMF ($5 \times 1 \mathrm{~mL}$). The resin was subsequently submitted to iterative peptide assembly (Fmoc-SPPS).

Estimation of amino acid loading: The resin was treated with 20% piperidine/DMF $(2 \times 1 \mathrm{~mL}, 3 \mathrm{~min})$ and $50 \mu \mathrm{~L}$ of the combined deprotection solution was diluted to 10 mL
using 20% piperidine/DMF in a volumetric flask. The UV absorbance of the resulting piperidine-fulvene adduct was measured ($\lambda=301 \mathrm{~nm}, \varepsilon=7800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) to estimate the amount of amino acid loaded onto the resin.

General Procedure 2: Iterative peptide assembly (Fmoc-SPPS)

General amino acid coupling: A solution of Fmoc-protected amino acid (4 equiv.), PyAOP (4 equiv.), HOAt (8 equiv.) and 4 -methylmorpholine (NMM, 8 equiv.) in DMF (final concentration of resin-bound peptide $100 \mu \mathrm{M}$) was preactivated for 3 min before added to the resin. After 1 h (15 h in the case of N-methyl amino acids) the resin was washed with DMF ($5 \times 1 \mathrm{~mL}$), DCM ($5 \times 1 \mathrm{~mL}$) and DMF ($5 \times 1 \mathrm{~mL}$).

Fmoc-deprotection: The resin was treated with 20% piperidine/DMF ($2 \times 1 \mathrm{~mL}, 3 \mathrm{~min}$) and washed with DMF $(5 \times 1 \mathrm{~mL})$, $\mathrm{DCM}(5 \times 1 \mathrm{~mL})$ and DMF $(5 \times 1 \mathrm{~mL})$.

Capping: Acetic anhydride/pyridine ($1: 9 \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL}$)) was added to the resin. After 3 min the resin was washed with DMF $(5 \times 1 \mathrm{~mL}), \mathrm{DCM}(5 \times 1 \mathrm{~mL})$ and DMF $(5 \times 1 \mathrm{~mL})$.

Cleavage: TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}(95: 5: 5 \mathrm{v} / \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL})$ was added to the resin and shaken for 1 h . Then the resin was washed wih TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}(95: 5: 5 \mathrm{v} / \mathrm{v} / \mathrm{v}, 4 \times 2 \mathrm{~mL})$. The combined solutions were concentrated with a stream of N_{2}, purified by preparative RP-HPLC and analyzed by LC/MS (ESI+).

General Procedure 3: Alloc-deprotection: A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$) and PhSiH_{3} (25 equiv.) in DCM (final concentration of resin-bound peptide $100 \mu \mathrm{M}$) was added to the resin. After 15 min the resin was washed with DCM $(10 \times 3 \mathrm{~mL})$, DMF $(10 \times 3 \mathrm{~mL})$, DCM $(10 \times 3 \mathrm{~mL})$, and DMF $(10 \times 3 \mathrm{~mL})$.

General Procedure 4: Allyl-deporotection: A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.8 equiv.) and PhSiH_{3} (40 equiv.) in DCM (final concentration of resin-bound peptide $100 \mu \mathrm{M}$) was added to the resin. After 1 h the resin was washed with DCM $(10 \times 3 \mathrm{~mL})$, DMF $(10 \times 3 \mathrm{~mL})$, DCM $(10 \times 3 \mathrm{~mL})$, and DMF $(10 \times 3 \mathrm{~mL})$.

Experimental and analytical data

(R)-Fmoc- N (Me)-Phg-OH (7)

A suspension of (R)- N -methylphenylglycine ($495 \mathrm{mg}, 3.00 \mathrm{mmol}$) and FmocOSu (1.11 g , $3.30 \mathrm{mmol})$ in THF/sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v})$ was stirred at rt for 15 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, then washed with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. Subsequently, HCl (1m) was added dropwise to reach $\mathrm{pH}=3$. The reaction mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo yielding $1.10 \mathrm{~g}(95 \%)$ of the Fmoc-protected amino acid 7 as a colorless solid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-72.3\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
m.p. $124.5-126^{\circ} \mathrm{C}$.

FTIR (ATR): $\tilde{v}=2929,1743,1667,1479,1447,1399,1351,1305,757,739,704 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ $7.28(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.15,5.76$ (rotamers, $\mathrm{s}, 1 \mathrm{H}), 4.58-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~m}$, $1 \mathrm{H}), 2.78,2.73,2.68$ (rotamers, s, 3H) ppm.
${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.4,144.0,143.9,141.5,129.2,1290,128.8,127.9$, 127.2, 125.20, 125.16, 120.1, 68.2, 62.7, 47.4, 31.2 ppm.

MS (ESI+): $m / z(\%): 410.1$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (ESI+): Calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4}+\mathrm{Na}\right]: ~ m / z=410.1363$, found: 410.1365.

Allyl 3-O-Allyloxypicolinate

3-Hydroxypicolinic acid ($3.06 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added to a stirred mixture of $\mathrm{NaH}(60 \%$, $2.00 \mathrm{~g}, 50.0 \mathrm{mmol})$ in DMF (100 mL) at rt and stirred for 20 min before allylbromide $(3.62 \mathrm{~mL}, 42.0 \mathrm{mmol})$ was added and the resulting mixture was stirred for 15 h . After the addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, the solvent was removed in vacuo and the brown residue was taken up in sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and extraced with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude product was purified by column chromatography on silica [hexanes/EtOAc $=90: 10 \rightarrow 0: 100(12 \mathrm{CV})^{\mathrm{a}}$] affording the title compound as a dark oil ($2.52 \mathrm{~g}, 57 \%$).
$\mathbf{R}_{f}=0.58$ (hexanes/EtOAc $=1: 1$).
FTIR (ATR): $\tilde{v}=1732,1578,1445,1300,1193,1139,1102,989,801,737 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.24(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.03-5.99(\mathrm{~m}, 2 \mathrm{H})$, 5.42 (app t, $J=15.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.27 (app t, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}$), $4.86-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.61$ (app br s, 2H) ppm.
${ }^{13} \mathbf{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=164.7,154.5,141.4,139.7,132.1,132.0,126.9,121.6$, 119.1, 118.4, 69.7, 66.3 ppm .

MS (ESI+): $m / z(\%): 242.1$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (ESI+): Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{Na}\right]: m / z=242.0788$, found:242.0788

[^0]

3-Allyloxypicolinic acid (12)

LiOH ($320 \mathrm{mg}, 13.4 \mathrm{mmol}$) was added to a solution of allyl 3-O-allyloxypicolinate (2.18 g , $9.95 \mathrm{mmol})$ in THF/ $\mathrm{H}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v})$ and the reaction mixture was stirred at rt for 15 h . After the addition of $\mathrm{HCl}(1 \mathrm{~m})$ to reach $\mathrm{pH}=5$, the solvent was removed in vacuo and the residue was purified by column chromatograhy on silica $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=95: 5 \rightarrow 85: 15(10 \mathrm{CV})\right]$ to yield the title compound as a colorless foam ($1.71 \mathrm{~g}, 96 \%$).
$\mathbf{R}_{\boldsymbol{f}}=0.34\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
FTIR (ATR): $\tilde{v}=3376,1608,1444,1394,1273,1215,1119,982,868,803,708,667 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CDCl}_{3}$): $\delta=8.12(\mathrm{dd}, J=4.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.16(\mathrm{~m}$, $2 \mathrm{H}), 6.02(\mathrm{ddt}, J=17.3,10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dq}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dq}, J=$ $10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.66 (dt, $J=5.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (125.8 MHz, $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{CDCl}_{3}$): $\delta=168.4,154.7,141.7,140.5,132.7,127.2$, 122.8, 118.3, 70.1 ppm .

MS (ESI-): $m / z(\%): 178.6(100)[\mathrm{M}-\mathrm{H}]^{-},\left[\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}-\mathrm{H}\right]^{-}$.
HRMS (ESI+): Calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}+\mathrm{Na}\right]: m / z=202.0475$, found: 202.0475 .

Alloc-Thr-OH

L-Threonine (5, $2.38 \mathrm{~g}, 20.0 \mathrm{mmol}$) was suspended in a THF/sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v})$ and cooled to $0^{\circ} \mathrm{C}$. Then allylchloro formate ($2.13 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added dropwise and the mixture was stirred at this temperature for 10 min before the ice bath was removed and the reaction was allowed to stir at rt for 15 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, then washed with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. Subsequently, HCl (5m) was added dropwise to reach $\mathrm{pH}=1.5$. The reaction mixture was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$, the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the
solvent was removed in vacuo yielding $2.60 \mathrm{~g}(64 \%)$ of the desired Alloc-protected amino acid as a colorless syrup which was used in the next step without further purification.

Alloc-Thr-Ot ${ }^{t}$ Bu (6)

A mixture of DIC ($6.20 \mathrm{~mL}, 61.0 \mathrm{mmol}$), $\mathrm{CuCl}(226 \mathrm{mg}, 2.28 \mathrm{mmol})$ and tert- $\mathrm{BuOH}(5.0$ mL) was stirred at rt under the exclusion of light for 5 d . After dilution of the mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, a solution of Alloc-Thr-OH ($2.40 \mathrm{~g}, 11.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise and the mixture was stirred at rt for 15 h . The mixture was filtered, washed with sat. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$, and the organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After reomval of the solvent in vacuo the residue was purified by flash chromatography on silica [hexanes/EtOAc $=85: 15 \rightarrow 25: 75(10 \mathrm{CV})$] furnishing 6 as a colorless syrup $(2.20 \mathrm{~g}$, $72 \%)$.
$\mathbf{R}_{\boldsymbol{f}}=0.79$ (hexanes/EtOAc $=1: 1$).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-26.9(c 2.0, \mathrm{MeOH})$.
FTIR (ATR): $\tilde{v}=2978,1701,1516,1369,1221,1154,1065,993 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.93(\mathrm{ddt}, J=17.4,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{dq}, J=10.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dt}, J=5.7,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.26(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100.6 MHz, CDCl_{3}): $\delta=170.3,156.7,132.8,117.9,82.8,68.5,66.1,59.6,28.2$, 20.1 ppm .

MS (ESI+): $m / z(\%): 282.1$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (ESI+): Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}+\mathrm{Na}\right]: m / z=282.1312$, found: 282.1313.

O-((R)-2-(((9 H -fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-2-phenylacetyl)- N -((allyloxy)carbonyl)-L-threonine (4)

To a stirred solution of Alloc-Thr-OtBu (6, $337 \mathrm{mg}, 1.30 \mathrm{mmol}$) and (R)-Fmoc- α phenylsarcosine ($7,620 \mathrm{mg}, 1.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.50 \mathrm{~mL})$ was added EDC $\cdot \mathrm{HCl}(380$ $\mathrm{mg}, 2.00 \mathrm{mmol})$ and DMAP $(16.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 3 h . After removal of the solvent by a stream of N_{2}, the residue was redissolved in EtOAc (50 mL) and washed with $\mathrm{HCl}(50 \mathrm{~mL}, 1 \mathrm{~m})$, sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The residue was purified by chromatography on silica [hexanes $\rightarrow 30 \%$ EtOAc/hexanes (18 CV)] yielding tert-butylester $\mathbf{8}$ as a colorless oil and a mixture of diastereomers ($600 \mathrm{mg} \mathrm{73} \mathrm{\%}$, $d r$ 66:34).

Ester 8 ($300 \mathrm{mg}, 477 \mu \mathrm{~mol}, d r 66: 34$) was treated with a mixture of TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$, $1: 1, \mathrm{v} / \mathrm{v}$) and stirred at rt for 15 min . The solvent was removed in vacuo, the residue was redissolved in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 1: 1)$ and purified by preparative reversed-phase HPLC (Sunfire $\mathrm{C}_{18}, 30 \times 150 \mathrm{~mm}$) using an isokratic solvent combustion [MeCN/ $\mathrm{H}_{2} \mathrm{O}(0.1 \% \mathrm{TFA})$ $=55: 45$ total flow rate: $\left.50 \mathrm{~mL} \cdot \mathrm{~min}^{-1}\right]$ affording the desired diastereomer $4(160 \mathrm{mg}, 60 \%, d r$ $>99: 1)$ and the minor component $9(90.0 \mathrm{mg}, 33 \%, d r 95: 5)$ both as colorless oils. ${ }^{\text {b }}$

Preparative RP-HPLC: $t_{\mathrm{R}}=9.3 \mathrm{~min}(\mathbf{9}), 10.2 \mathrm{~min}(\mathbf{4})$.
RP-LC/MS: $t_{\mathrm{R}}=2.70 \mathrm{~min}(9), 2.73 \mathrm{~min}(4), \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)=0: 0(0.00-$ $0.30 \mathrm{~min}) \rightarrow$ 100:0 $(3.00 \mathrm{~min})$, total flow rate: $0.60 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+54.3(c 0.4, \mathrm{MeOH})$.
FTIR (ATR): $\tilde{v}=1649,1450,1149,741,691 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR (500 MHz, Methanol- d_{4}): $\delta=7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.19$ (br s, 1H), 7.03 (br s, 1H), 5.92, 5.60 (br s, 1H, rotamers), $5.90-$ $5.84(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-$ $4.42(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 3 \mathrm{H}$, rotamers) ppm.

[^1]${ }^{13} \mathbf{C}$ NMR (125.8 MHz , Methanol- d_{4}): $\delta=172.5,170.7,160.9,158.7,145.3,142.7,135.4$, $134.1,130.1,129.9,129.6,128.8,128.2,126.0,121.0,117.8,73.1,69.0,66.9,63.8,58.8$, 48.5, 31.7, 17.1 ppm .

MS (ESI+): $m / z(\%): 595.3$ (85) $[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (ESI +): Calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8}+\mathrm{Na}\right]: m / z=595.2051$, found: 595.2052.

Norfijimyin A (3)

Fmoc-Ala-OH $(9.34 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and DIPEA $(10.5 \mu \mathrm{~L}, 60 \mu \mathrm{~mol})$ were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and added to pre-swollen 2CTC-resin (12.5 mg). After 16 h the loading mixture was dicharged from the fritted syringe and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 1 \mathrm{~mL})$, DMF $(5 \times 1 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 1 \mathrm{~mL})$. Then the resin was capped according to general procedure 1 and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 1 \mathrm{~mL})$ and DMF $(5 \times 1 \mathrm{~mL})$. After deprotection of the first amino acid (Ala) according to general procedure 2 the resin loading was determined to be $0.3 \mathrm{mmol} \cdot \mathrm{g}^{-1}(24 \mu \mathrm{~mol})$. The linear peptide was elongated using coupling conditions according to genral procedure 2 incorporating the commercially available amino acids Fmoc- $N(\mathrm{Me})$-Leu-OH, Fmoc-Sar-OH, Fmoc-D-allo-hydroxyproline, and Fmoc-D-Leu-OH. After deprotection of D-leucine using the standard protocol, ester bond containing fragment $\mathbf{4}$ was incoroprated.
Fragment 4 (32 mg , $56 \mu \mathrm{~mol}$, 2.3 equiv.), PyAOP (29.2 mg , $56 \mu \mathrm{~mol}$, 2.3 equiv,), HOAt ($30.0 \mathrm{mg}, 221 \mu \mathrm{~mol}, 9.2$ equiv.), and $\mathrm{NMM}(12.2 \mu \mathrm{~L}, 106 \mu \mathrm{~mol}, 4.6$ equiv.) were dissolved in anhydrous DMF (0.24 mL), and the resulting mixture was added to the resin. After 16 h resin-bound 11 was washed with DMF $(5 \times 1 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 1 \mathrm{~mL})$, DMF $(5 \times 1 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 1 \mathrm{~mL})$.
Then, Alloc-protecting group was removed and the resin was washed according to general procedure 3 followed by coupling with 3-allyloxypicolinic acid (12) according to general
procedure 2.
O-allyl protecting group was cleaved off according to general procedure 4 followed by cleavage of the peptide from the solid-support accordig to general procedure 2.
10% Palladium on activated charcoal ($12.8 \mathrm{mg}, 12 \mu \mathrm{~mol}, 50 \mathrm{~mol} \%$) was added to the a solution of the N-terminal protected crude linear depsipeptide in Methanol (5 mL). The mixture was degassed by bubbling a stream of N_{2} into the solution. Then, a hydrogen-filled balloon was attached and the reaction mixture was stirred at rt for 12 h before it was filtered using a PTFE-syringe filter ($0.22 \mu \mathrm{~m}$ pore size). The filter was thoroughly washed with $\mathrm{MeOH}(20 \mathrm{~mL})$ and the solvent was removed by a stream of N_{2}.

The crude linear depsipeptide $\mathbf{1 3}$ was purified by reversed-phase preparative HPLC $(30 \times 150 \mathrm{~mm})$ using a focused gradient $\left[\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(0.1 \% \mathrm{TFA})=0: 0(0.00-1.00 \mathrm{~min}) \rightarrow\right.$ 25:75 (4.00 min$) \rightarrow 45: 55(18.00 \mathrm{~min})$, total flow rate: $50.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \mathrm{t}_{R}=6.5-9.0 \mathrm{~min}$ (broad peak)] affording $\mathbf{1 3}$ ($8.2 \mathrm{mg}, 41 \%$) as a colorless lyophilisate.
$13(6.0 \mathrm{mg}, 6.0 \mu \mathrm{~mol})$ was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}(1.2 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$, final concentration 5 mm). HATU ($4.6 \mathrm{mg}, 12 \mu \mathrm{~mol}$), HOAt ($4.9 \mathrm{mg}, 36 \mu \mathrm{~mol}$) and $N, N-$ diisopropylethylamine ($4.2 \mu \mathrm{~L}, 24 \mu \mathrm{~mol}$) were added and the reaction mixture was stirred at rt for $24 \mathrm{~h}^{\mathrm{c}}$ before the solvent was removed by a stream of N_{2} and the crude cyclodepsipeptide was purified by preparative reversed-phase HPLC ($19 \times 150 \mathrm{~mm}$) using a linear gradient $\left[\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(0.1 \% \mathrm{TFA})=0: 0(0.00-1.00 \mathrm{~min}) \rightarrow 60: 40(16.0 \mathrm{~min})\right.$, total flow rate: $32.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$] affording two diastereomers ($3.1 \mathrm{mg}, 60 \%$ combined yield) as colorless lyophilisates (epi-3: $1.7 \mathrm{mg}, 33 \%$; 3: $1.4 \mathrm{mg}, 27 \%$).

Preparative RP-HPLC: $t_{\mathrm{R}}=14.0 \mathrm{~min}(e p i-3), 16.0 \mathrm{~min}(\mathbf{3})$.
RP-LC/MS: $t_{\mathrm{R}}=4.83 \mathrm{~min}(e p i-3), 5.05 \mathrm{~min}(3), \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\left(0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)=0: 0(0.00-$ $0.50 \mathrm{~min}) \rightarrow$ 100:0 $(8.00 \mathrm{~min})$, total flow rate: $0.60 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$.

Norfijimycin A (3, mixture of conformers): ${ }^{[2]}$
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=9.61(\mathrm{~s}), 8.60(\mathrm{~d}, J=7,9 \mathrm{~Hz}), 8.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 8.04$ (d, $J=3.6 \mathrm{~Hz}$), $8.00-7.93(\mathrm{~m}), 7.37-7.04(\mathrm{~m}), 5.88(\mathrm{~s}), 5.68(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 5.41(\mathrm{br} \mathrm{s})$, 5.29 (br s), $5.03-4.64$ (m), 4.59 (br d, $J=8.0 \mathrm{~Hz}$), $4.46-4.40$ (m), 4.38 (s), 4.30 (br s),

[^2]4.25 (br d, $J=6.2 \mathrm{~Hz}$), 4.19 (br s), 4.15 (br s), $4.11-4.05$ (m), 4.03 (br d, $J=3.8 \mathrm{~Hz}$), 4.01 - 3.99 (m), 3.98 (d, $J=4.8 \mathrm{~Hz}$), 3.96 (br d, $J=4.7 \mathrm{~Hz}$), 3.91 (dd, $J=11.6,4.8 \mathrm{~Hz}$), 3.88 (br s), $3.76(\mathrm{dd}, ~ J=8.6,6.1 \mathrm{~Hz}$), $3.67-3.62(\mathrm{~m}), 3.54(\mathrm{br} \mathrm{d}, ~ J=10.3 \mathrm{~Hz}), 3.41(\mathrm{~d}, J=5.1 \mathrm{~Hz}$), 3.38 (d, $J=10.2 \mathrm{~Hz}$), $3.36(\mathrm{~d}, J=11.5 \mathrm{~Hz}$), 3.33 (d, $J=6.0 \mathrm{~Hz}$), $3.16(\mathrm{br} \mathrm{s}), 3.08-3.05$ $(\mathrm{m}), 3.00(\mathrm{br} \mathrm{s}), 2.92(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 2.82(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 2.76(\mathrm{br} \mathrm{s}), 2.67(\mathrm{br} \mathrm{s}), 2.21(\mathrm{t}$, $J=7.6 \mathrm{~Hz}), 2.02-2.00(\mathrm{~m}), 1.68(\mathrm{p}, J=2.6 \mathrm{~Hz}), 1.50-1.47(\mathrm{~m}), 1.42-1.31(\mathrm{~m}), 1.25(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}$), 1.18 (br s), $1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 1.08(\mathrm{br} \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.89-0.76$ (m) ppm.

MS (ESI+): m/z (\%): 865.8 (24) $[\mathrm{M}+\mathrm{H}]^{+}$(epi-3), 865.8 (48) $[\mathrm{M}+\mathrm{H}]^{+}$(3).
HRMS (ESI+): Calcd. for $\left[\mathrm{C}_{43} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{11}+\mathrm{Na}\right]: m / z=887.4274$, found: 887.4269 (3).

Antimicrobial Screening: Resazurin Assay for Mtb

The compounds were originally stored as 10 mm stock solutions in 100% DMSO. Two fold serial dilutions of the compounds were made in a 96 well plate using Middlebrook 7H9 medium supplemented with $\operatorname{ADC}(0.5 \% \mathrm{v} / \mathrm{v}$ glycerol and $0.05 \% \mathrm{v} / \mathrm{v}$ Tween-80). M. tuberculosis H 37 Rv was grown to mid-exponential phase to an OD_{600} of $0.6-0.8$ in 7 H 9 media at $37^{\circ} \mathrm{C}$. On the day of the assay, culture was diluted to an OD_{600} of 0.002 and $100 \mu \mathrm{l}$ of bacterial suspension was added to the 96 well plate containing $100 \mu \mathrm{~L}$ of the diluted compounds. The plate was incubated for 5 days at $37^{\circ} \mathrm{C}$ in a humidified incubator and $30 \mu \mathrm{~L}$ of Resazurin $(0.02 \% \mathrm{w} / \mathrm{v})$ and $12.5 \mu \mathrm{~L}$ of Tween- 80 was added to each well and incubated for further 24 h . On day 6, the fluorescence was read using a BMG Labtech Polarstar plate reader (excitation 530 nm and emission 590 nm). The results are presented as M. tuberculosis survival as a percentage of negative control.

Mass Spectra and Chromatograms

Generic Display Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

Acquisition Date 29/08/2016 12:16:05 PM D:\Datałnick-2016-files\ESI_Positiveไ08-Augusti2016-08-29\2016-08-29-posesi-service_000022.d 1MW Positive ESI
AS4. 102 MeOH 1 M TOF delay 0.0006 s , Q1 $300 \mathrm{~m} / \mathrm{z}$

20160929_AS4_160929133410

Generic Display Report

Analysis Info
Analysis Name
Method
Sample Name Comment

Acquisition Date 26/08/20164:44:02 PM
D:Datałnick-2016-files\ESI_Positivel08-August 2016-08-29\2016-08-29-posesi-service_000038.d 1MW Positive ES
AS4. 116 MeOH 1M TOF delay 0.0008 s , Q1 $300 \mathrm{~m} / \mathrm{z}$

Generic Display Report

Analysis Info		Acquisition Date	22/08/2016 3:19:38 PM
Analysis Name	D:Datałnick-2016-files\ESI_Positivelo8-Augusti2016-08-2212016-08-22-posesi-service_000030.d		
Method	1MW Positive ESI	Operator	
Sample Name	AS5.14	Instrument	apex-Ultra
Comment	MeOH 1M TOF delay 0.0006s, Q1 $300 \mathrm{~m} / \mathrm{z}$		

NMR spectra

References

[1] a) G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179; b) H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
[2] P. Sun, K. N. Maloney, S.-J. Nam, N. M. Haste, R. Raju, W. Aalbersberg, P. R. Jensen, V. Nizet, M. E. Hensler, W. Fenical, Bioorg. Med. Chem. 2011, 19, 65576562.

[^0]: ${ }^{\mathrm{a}} \mathrm{CV}=$ column volumes

[^1]: ${ }^{\mathbf{b}}$ crude $d r$ 66:34 (4:9).

[^2]: ${ }^{\mathbf{c}}$ Aliquots were taken at $2,5,18$ and 24 h and analyzed by LC/MS: After 2 h reaction time a small amount of the linear depsipeptide was cyclized and only one diastereomer ($t_{\mathrm{R}}=5.05 \mathrm{~min}$) was formed, presumably Norfijimycin A (3). After 5 h reaction time the amount of cyclic peptide was increased whereas a small amount of a second diastereomer ($t_{\mathrm{R}}=4.83 \mathrm{~min}$), presumably epi-3, was also detected. The final $1: 1$ ratio of $\mathbf{3}$ and epi-3 was reached after 18 h . It is proposed that prolonged reaction time in the presence of coupling reagents led to increased epimerization.

