SUPPLEMENTARY MATERIAL

[NiFe]-Hydrogenase synthetic models with redox-active ligands

David Schilter,A,B,C Danielle L. Gray,B Amy L. Fuller,B and Thomas B. RauchfussB

AIBS Center for Multidimensional Carbon Materials, 50 UNIST-gil, Ulsan 44919 (South Korea)
BDepartment of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave. Urbana, IL 61801, USA
CCorresponding author. Email: d.schilter@gmail.com

List of Figures
Figure S1. FT-IR spectrum (νCO region, CH2Cl2) of [1a(μ-H)]BF4.. 2
Figure S2. 31P{1H} NMR spectra (CD2Cl2, 202 MHz) of [1a(μ-H)]BF4................................. 2
Figure S3. 1H NMR spectrum (CD2Cl2, 500 MHz) of [1a(μ-H)]BF4..................................... 3
Figure S4. Positive ion ESI mass spectrum of [1a(μ-H)]BF4.. 3
Figure S5. X-ray structure of [1a(μ-H)]BF4·CH2Cl2.. 4
Figure S6. Cyclic voltammograms of [1a(μ-H)]BF4 acquired in the presence of varying molar equivalents of CF3CO2H... 5
Figure S7. Analysis of the currents observed for reduction of [1a(μ-H)]BF4 in the presence of CF3CO2H... 5
Figure S8. FT-IR spectrum (νCO region, CH2Cl2) of [1a]BF4.. 6
Figure S9. Positive ion ESI mass spectrum of [1a]BF4... 6
Figure S10. Cyclic voltammogram of [1a]BF4... 7
Figure S11: FT-IR spectrum (νCO region, CH2Cl2) of [1b]BF4.. 7
Figure S12: Positive ion ESI mass spectrum of [1b]BF4... 8
Figure S13: FT-IR spectrum (νCO region, CH2Cl2) of [1c]BF4.. 8
Figure S14. Positive ion ESI mass spectrum of [1c]BF4... 9
Figure S15. X-band EPR spectra of [1c]BF4 in CH2Cl2/PhMe.. 9
Figure S16. Cyclic voltammogram of [1c]BF4.. 9
Figure S17. FT-IR spectrum (νCO region, CH2Cl2) of [1c](BF4)2... 10
Figure S18. 31P{1H} NMR spectrum (CD2Cl2, 202 MHz) of [1c](BF4)2.................................... 10
Figure S19. 1H NMR spectrum (CD2Cl2, 500 MHz) of [1c](BF4)2... 11
Figure S20: Positive ion ESI mass spectra of [1c](BF4)2.. 12
Figure S21. FT-IR spectrum (νCO region, CH2Cl2) of [2a]BF4... 13
Figure S22. Positive ion ESI mass spectrum of [2a]BF4.. 13
Figure S23. Cyclic voltammogram of [2a]BF4... 13
Figure S24. FT-IR spectrum (νCO region, CH2Cl2) of [2b]BF4... 14
Figure S25. Positive ion ESI mass spectrum of [2b]BF4.. 14
Figure S26. Cyclic voltammogram of [2b]BF4... 15
Figure S27: FT-IR spectrum (νCO region, CH2Cl2) of [2c]BF4.. 15
Figure S1. FT-IR spectrum ($\nu _{\text{CO}}$ region, CH$_2$Cl$_2$) of [1a(μ-H)]BF$_4$.

Figure S2. 31P{1H} NMR spectra (CD$_2$Cl$_2$, 202 MHz) of [1a(μ-H)]BF$_4$ recorded at room temperature (top) and at –28°C (bottom).
Figure S3. 1H NMR spectrum (CD$_2$Cl$_2$, 500 MHz) of [1a(μ-H)]BF$_4$. Resonances at 3.43 (Et$_2$O), 1.31 (pentane), 1.12 (Et$_2$O) and 0.89 ppm (pentane) are from impurities in the NMR solvent.

Figure S4. Positive ion ESI mass spectrum of [1a(μ-H)]BF$_4$.
Brown single crystals of [1a(μ-H)]BF₄·CH₂Cl₂ formed upon slow diffusion of pentane vapor into a concentrated CH₂Cl₂ solution of [1a(μ-H)]BF₄. One crystal was subjected to X-ray diffraction at 173 K, its space group determined as monoclinic P2₁/c (Z = 4) with cell parameters: a 12.6528(6) Å, b 33.7738(18) Å, c 12.2942(6) Å, α 90°, β 90.373(4)°, γ 90°. While these preliminary data were of poor quality, they did confirm the atom connectivity within the complex. The Ni-Fe distance in [1a(μ-H)]⁺ (2.662 Å) is similar to that in the analogous triphosphine hydride [(dppe)Ni(pdt)HFe(CO)₂(PPh₃)]⁺ (2.643 Å), with the monophosphine occupying a basal coordination site trans to an S atom in both complexes. The H⁻ ligand was not resolved in the Fourier difference map. Rather, it was fixed at a distance from Fe₁ equivalent to that in the PPh₃ congener. Indirect evidence of the presence of H⁻ comes from the stereochemistry at the Fe₁ site: were the hydride not present, then the mppf ligand would likely occupy an apical position, as it does in the Ni(II)Fe(I) model complexes of the type [(dppe)Ni(pdt)Fe(CO)₂(PRAr₂)]⁺, including [2b]⁺. In this case, the π-accepting CO ligands are poised trans to the π-donating CO groups, no doubt a favorable situation. But this is not the case with [1a(μ-H)]⁺, in which mppf occupied a basal site, ceding its favorable apical position to CO, a ligand that prefers a strong donor trans to it, in this case H⁻. Lastly, it is noted that the bond distances are consistent with a Ni(II)(μ-H)Fe(II)Fe(II) description for this complex, in line with the CO stretching frequencies and the sharpness of the NMR data.

![Figure S5. X-ray structure of [1a(μ-H)]BF₄·CH₂Cl₂ with the H atoms, disordered BF₄⁻ anion and CH₂Cl₂ solvate molecule omitted for clarity. Disorder in the Cp ring and two Ph groups of the dppe ligand is also omitted for clarity. Selected distances (Å): Ni1-Fe1, 2.66; Ni1-P1, 2.17; Ni1-P2, 2.17; Ni1-S1, 2.21; Ni1-S2, 2.21; Fe1-S1, 2.31; Fe1-S2, 2.31; Fe1-H1, 1.49; Fe1-C30, 1.79; Fe1-C31, 1.78; Fe1-P3, 2.23; Fe2-C8(PPh₃(centroid), 1.64; Fe2-C3H₄PPh₃(centroid), 1.72.](image-url)
Figure S6. Cyclic voltammograms of [1α(μ-H)]BF₄ (1 mM) acquired in the presence of varying molar equivalents of CF₃CO₂H.

Figure S7. Analysis of the currents observed for reduction of [1α(μ-H)]BF₄ (1 mM). The quotient of the current in the presence (i_c) to that in the absence of the acid CF₃CO₂H (i_p) is plotted against the molar ratio of CF₃CO₂H to [1α(μ-H)]BF₄. At higher acid concentrations, the wave shifts to more negative potentials, in line with direct reduction of CF₃CO₂H at the glassy carbon electrode.

The turnover frequency k for catalytic hydrogen evolution ($n = 2$) at a given scan rate v and temperature T can be determined using peak currents in the presence (i_c) and absence of acid (i_p). For catalysis at $E_{pc} = -1.37$ V (potential at $i_c/2 = E_{pc} = -1.33$ V):

$$\frac{i_c}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RTk}{Fv}}$$

$$\frac{965 \mu A}{22.6 \mu A} = 2 \frac{0.4463}{\sqrt{(8.314 J K^{-1} mol^{-1})(298 K)(96485 \frac{C}{mol})(0.1 J C^{-1} s^{-1})}} \approx 350 \text{ s}^{-1}$$
Figure S8. FT-IR spectrum (ν_{CO} region, CH$_2$Cl$_2$) of [1a]BF$_4$.

Figure S9. Positive ion ESI mass spectrum of [1a]BF$_4$.
Figure S10. Cyclic voltammogram of [1a]BF₄.

Figure S11: FT-IR spectrum (νCO region, CH₂Cl₂) of [1b]BF₄.
Figure S12: Positive ion ESI mass spectrum of [1b]BF₄⁻.

Figure S13: FT-IR spectrum (ν_{CO} region, CH₂Cl₂) of [1c]BF₄⁻.
Figure S14. Positive ion ESI mass spectrum of [1c]BF₄.

Figure S15. X-band EPR spectra of [1c]BF₄ in CH₂Cl₂/PhMe recorded at 110 K (top) and room temperature (bottom).

Figure S16. Cyclic voltammogram of [1c]BF₄.
Figure S17. FT-IR spectrum (ν_{CO} region, CH$_2$Cl$_2$) of [1c](BF$_4$)$_2$.

Figure S18. 31P {1H} NMR spectrum (CD$_2$Cl$_2$, 202 MHz) of [1c](BF$_4$)$_2$.
Figure S19. 1H NMR spectrum (CD$_2$Cl$_2$, 500 MHz) of $[1c]$((BF$_4$)$_2$. Resonances at 3.43 (Et$_2$O), 1.31 (pentane), 1.12 (Et$_2$O) and 0.89 ppm (pentane) are from impurities in the NMR solvent.
Figure S20: Positive ion ESI mass spectra of [1c](BF₄)₂.
Figure S21. FT-IR spectrum (ν_{CO} region, CH$_2$Cl$_2$) of [2a]BF$_4$.

Figure S22. Positive ion ESI mass spectrum of [2a]BF$_4$.

Figure S23. Cyclic voltammogram of [2a]BF$_4$.
Figure S24. FT-IR spectrum (ν_{CO} region, CH$_2$Cl$_2$) of [2b]BF$_4$.

Figure S25. Positive ion ESI mass spectrum of [2b]BF$_4$.
Figure S26. Cyclic voltammogram of [2b]BF₄.

Figure S27: FT-IR spectrum (νCO region, CH₂Cl₂) of [2c]BF₄.
Figure S28. Positive ion ESI mass spectrum of [2c]BF₄.

Figure S29. X-band EPR spectra of [2c]BF₄ in CH₂Cl₂/PhMe recorded at 110 K (top) and room temperature (bottom).

Figure S30. Cyclic voltammogram of [2c]BF₄.
Figure S31: FT-IR spectrum (ν_{CO} region, CH$_2$Cl$_2$) of [3](BF$_4$)$_2$.

Figure S32. Positive ion ESI mass spectrum of [3](BF$_4$)$_2$.
Figure S33. X-band EPR spectra of [3](BF₄)₂ in CH₂Cl₂/PhMe recorded at 110 K (top) and room temperature (bottom).

Figure S34. Cyclic voltammogram of [3](BF₄)₂.