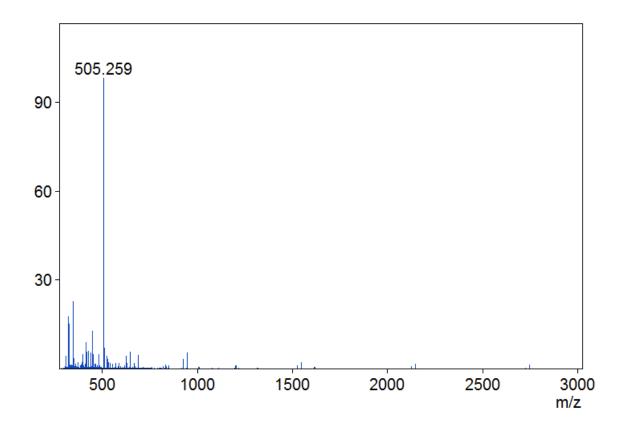
SUPPLEMENTARY MATERIAL

Synthesis of Two 2,2'-Bipyridine Containing Macrocycles for the Preparation of Interlocked Architectures

Jacob Whittaker, ^A Suresh Moorthy, ^A Jonathan Cremers, ^B Jason R. Price, ^C John C. McMurtrie, ^D and Jack K. Clegg ^{A,E}

^ASchool of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia.

^BDepartment of Chemistry, The University of Oxford, Chemistry Research Laboratory Mansfield Road, Oxford OX1 3TA, UK.


 $^{\rm C}$ The Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic. 3168, Australia.

^DSchool of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.

^ECorresponding author. Email: <u>j.clegg@uq.edu.au</u>

Scheme S1: Unsuccessful preparation of 3 via imine condensation.

Scheme S2: An *in situ* reduction of the synthesised macrocycle **3** to produce the amine analogue of **4**.

Figure S1: The high-resolution mass spectrum of **3**. No peaks corresponding to starting material or higher oligomerisation are observable.

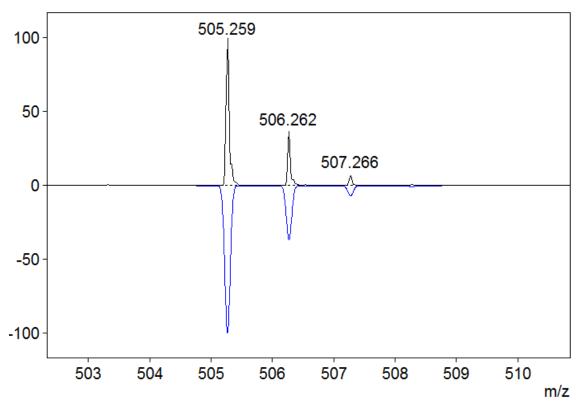


Figure S2: The observed isotopic distribution (above) compared with the theoretical distribution (below) of the macrocycle 3.