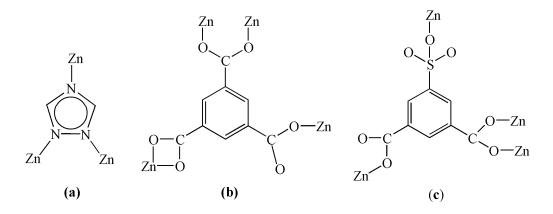
10.1071/CH17498_AC

©CSIRO 2018


Australian Journal of Chemistry 2018, 71(2 & 3), 111-118

SUPPLEMENTARY MATERIAL

Two Coordination Polymers Constructed from Pentanuclear Zinc Clusters with Triazolate and Benzenecarboxylate Ligands: Selective Gas Adsorption

Wen-Wen Zhang,^A Yu-Ling Wang,^{A,B} Yin Liu,^A and Qing-Yan Liu^{A,B}

 ^A College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.
^B Corresponding authors. Email: <u>ylwang@jxnu.edu.cn</u>; <u>qyliuchem@hotmail.com</u>

Scheme S1. Coordination modes of the organic ligands in 1 and 2.

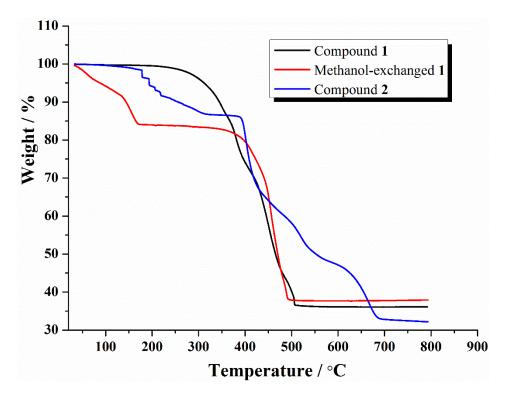
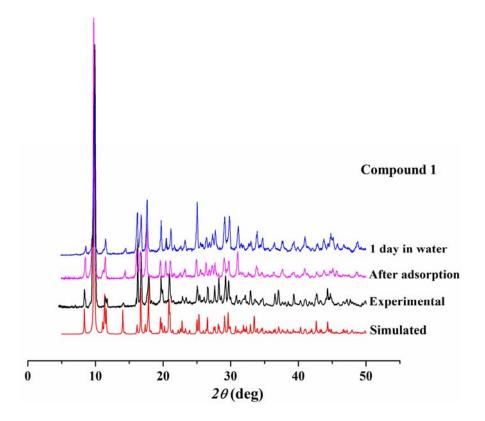



Fig. S1 TGA curves for 1 and 2.

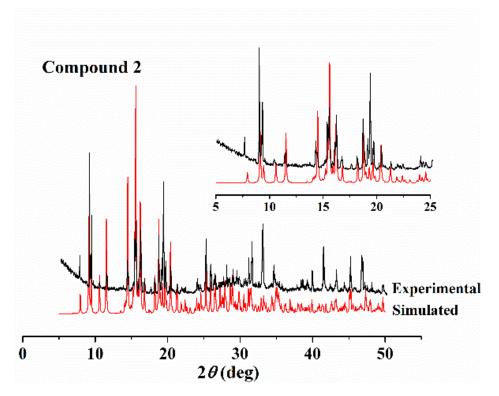


Fig. S2 Simulated and experimental powder X-ray diffraction patterns for 1 and 2.

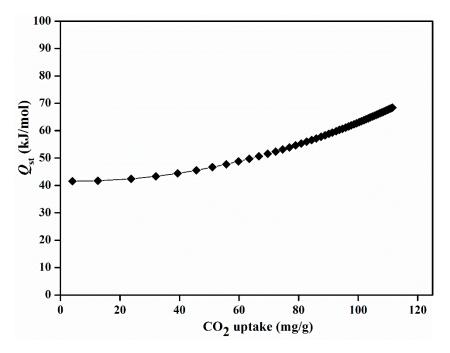


Fig. S3 The CO₂ adsorption enthalpy for 1 calculated from the CO₂ adsorption isotherms at 273 K and 293 K.

IAST calculations of adsorption selectivity

In order to determine the adsorption selectivities of CO₂ with respect to CH₄ and N₂, binary mixture adsorption equilibrium was determined using the Ideal Adsorbed Solution Theory (IAST)

of Myers and Prausnitz.¹ The IAST was used to predict mixed gas behavior from experimentally measured single-component isotherms. The experimental isotherm data for pure CO₂, CH₄ and N₂ (measured at 273 K) were fitted using a Langmuir-Freundlich (L-F) model (eqn 1).

$$q = (a \times b \times p^{c})/(1 + b \times p^{c}) \qquad (1)$$

Where q and p are adsorbed amounts and pressures of component i, respectively.

Using the Langmuir-Freundlich fits, the adsorption selectivity factor, S_{ads} , is defined by (eqn 2)

 $S_{\rm ads} = (q_{\rm i}/q_{\rm j})/(p_{\rm i}/p_{\rm j})$ (2)

Where q_i is the amount of i adsorbed and p_i is the partial pressure of i in the mixture.