10.1071/CH17530_AC

©CSIRO 2018

Australian Journal of Chemistry 2018, 71(2 & 3), 181-185

Supplementary Material

Carbon Dioxide Utilisation for the Synthesis of Unsymmetrical Dialkyl and Cyclic Carbonates

Peter Goodrich, ^A H. Q. Nimal Gunaratne, ^{A,D} Lili Jin, ^{B,D} Yuntao Lei, ^B and Kenneth R. Seddon^{A,C}

^AThe QUILL Research Centre, School of Chemistry and Chemical Engineering, the Queen's

University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.

^BDepartment of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, China.

^cDeceased.

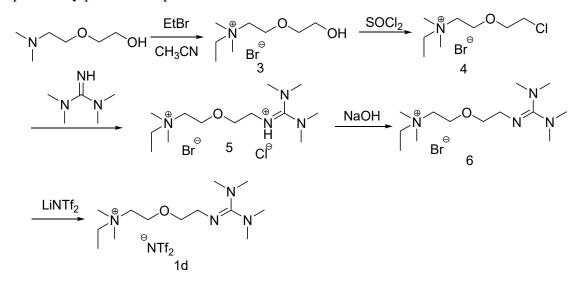
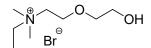
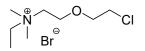

^DCorresponding authors. Email: <u>n.gunaratne@qub.ac.uk; jinlili@cpu.edu.cn</u>.

Table of Contents

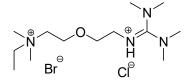
A. Procedure for the synthesis of 1d	S2-S5			
B. General procedure for the synthesis of organic carbonates	S5-S5			
C. Characterization data of product (2a-2h)	S6-S7			
D. Copies of ¹ H NMR spectra of starting materials, benzyl propargyl carbonate				
and reaction mixture	S8			
E. Copies of ¹ H and ¹³ C-NMR spectra of new products	S9-S14			


A. Procedure for the synthesis of 1d

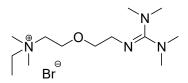
 $(5-\text{Diisopropylamino-3-oxapentyl}) dimethylethylammonium bis {(trifluoromethyl) sulfonyl} imide ['Pr_2N(CH_2)_2O(CH_2)_2N_{112}][NTf_2]) (1b), (8-diisopropylamino-3, 6-dioxaoctyl) dimethyl ethyl ammonium bis {(trifluoromethyl)sulfonyl} imide ['Pr_2N(CH_2)_2(OCH_2CH_2)_2N_{112}][NTf_2] (1c) were prepared in three steps starting with 2-dimethylaminoethanol and 2-[2-dimethylaminoethoxy] ethanol according to the previously published report.¹$


Scheme 1. Synthesis of ionic liquid 1d

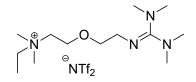
(5-Hydroxy-3-oxapentyl)dimethylethylammonium bromide (3).


2-[2-dimethylamino ethoxy] ethanol (5.34 g, 40.0 mmol) and bromoethane (10.9 g, 100 mmol) were heated under reflux in CH₃CN (20.0 mL) for 30 h. After evaporation of the solvent and excess bromoethane in *vacuo* at 60°C, a pale yellow powder was obtained (8.71 g, 90% yield). ¹H-NMR (CD₃OD): δ = 3.99-3.88 (m, 2H), 3.74-3.66 (m, 2H), 3.64-3.57 (m, 4H), 3.53 (q, *J* = 7.3, 2H), 1.44-1.34 (m, 3H); ¹³C-NMR (CD₃OD): δ = 73.8, 65.7, 64.2, 62.3, 62.0, 51.7, 8.66. HRMS-ESI (*m/z*) calcd for C₈H₂₀NO₂ [M-Br]⁺ 162.1494, 163.1526, found 162.1228, 163.1431, calcd for [Br]⁻ 78.9183, 80.9163, found 78.9174, 80.9157.

(5-Chloro-3-oxapentyl)dimethylethylammonium bromide (4).


SOCl₂ (8.55g, 70.0 mmol) was added dropwise at 0°C to a round-bottom flask containing **3** (8.35 g, 34.4 mmol). The system was stirred for 30 min at 0°C and then kept stirring for 6 h at 80°C. After cooling to room temperature, the excess SOCl₂ was removed under reduced pressure. The product was dried in *vacuo* at 60 °C for 24 h, a brown red liquid was obtained (8.78 g, 98% yield). ¹H-NMR (CD₃OD): δ = 3.99-3.88 (m, 2H), 3.74-3.66 (m, 2H), 3.64-3.57 (m, 4H), 3.53 (q, *J* = 7.3, 2H), 1.44-1.34 (m, 3H); ¹³C-NMR (CD₃OD): δ = 73.8, 65.7, 64.2, 62.3, 62.0, 51.7, 8.66. HRMS-ESI (*m/z*) calcd for C₈H₁₉ClNO [M-Br]⁺ 80.1155, 181.1187, 182.1127, found 180.1081, 181.1138, 182.1070, calcd for [Br]⁻ 78.9183, 80.9163, found 78.9174, 80.9157.

{5-(1,1,3,3-tetramethylguanidyl)-3-oxapentyl)} dimethylethylammonium bromide hydrochloride (5).


In a constant pressure dropping funnel, 4 (5.20 g, 20.0 mmol) and CH₃OH (6.00 mL) were introduced. This solution was added dropwise at 0 °C to a round-bottom flask equipped with a dry nitrogen inlet containing a solution of TMG (2.30 g, 20.0 mmol) in CH₃OH (6.00 mL). The system was stirred overnight at room temperature. The solvent was evaporated and the residue was further dried under vacuum (40 °C, 24 h) to yield a yellow solid (7.35 g, 98%). ¹H-NMR (CD₃OD): δ = 3.89-3.82 (m, 2H), 3.73-3.59 (m, 4H), 3.50 (dd, *J* = 5.7, 3.6, 2H), 3.42 (q, *J* = 7.3, 2H), 3.05 (s, 6H), 2.72 (s, 12H), 1.35-1.24 (m, 3H); ¹³C-NMR (CDCl₃): δ = 161.7, 71.1, 64.9, 62.6, 61.4, 51.3, 50.4, 43.1, 40.3, 8.58. HRMS-ESI (*m*/*z*) calcd for C₁₃H₃₂N₄O [M-Br-Cl]⁺ 260.2576, found 260.2639, calcd for [Br]⁻78.9183, 80.9163, found 78.9165, 80.9143.

{5-(1,1,3,3-tetramethyl guanidyl) -3-oxapentyl)} dimethylethylammonium bromide (6).

Compound 5 (3.75g, 10.0 mmol), NaOH (0.480g, 12.0 mmol) and CH₂Cl₂ 10.0 mL were introduced into a 25 mL round-bottom flask. The system was stirred for 24 h at room temperature. NaOH was isolated by filtration and the filtrate was evaporated on rotary evaporator. The residue was further dried under vacuum (60°C, 24 h) to yield a pale yellow liquid (3.05g, 90%).¹H-NMR (CDCl₃): δ = 4.10-4.01 (m, 2H), 3.93 (dd, *J* = 5.7, 3.5 2H), 3.87-3.74 (m, 4H), 3.69 (dd, *J* = 5.7, 4.4, 2H), 3.41 (s, 6H), 2.75 (s, 12H), 1.44 (t, *J* = 7.2, 3H); ¹³C-NMR (CDCl₃): δ = 167.5, 74.1, 64.8, 62.7, 61.4, 51.4, 43.2, 39.3, 8.67. HRMS-ESI (*m/z*) calcd for C₁₃H₃₁N₄O [M-Br]⁺ 259.2498, found 259.2561, calcd for [Br]⁻ 78.9183, 80.9163, found 78.9171, 80.9152.

{5-(1,1,3,3-tetramethyl guanidyl) -3-oxapentyl)} dimethylethylammonium bis{(trifluoromethyl)sulfonyl}amide (1d).

Lithium bis{(trifluoromethyl)sulfonyl} amide (1.58g, 5.50 mmol) in deionised water was added to a solution of **6** (1.70g, 5.00 mmol) in CH₂Cl₂ (20.0 mL). The system was kept stirring for 24 h at room temperature. The CH₂Cl₂ layer was then washed with deionised water several times to remove the salt from the organic phase. After removal of the solvent and drying overnight in high vacuum at 60°C, **1d** was obtained as a pale yellow liquid (2.43g, 90%).¹H-NMR (CD₃OD): δ = 4.00-3.89 (m, 2H), 3.78 (dt, *J* = 5.5, 1.6, 2H), 3.75-3.68 (m 2H), 3.58 (dd, *J* = 5.6, 3.8, 2H), 3.50 (q, *J* = 7.3, 2H), 3.14 (s, 6H), 2.98 (s, 12H), 1.38 (ddd, *J* = 7.3, 5.3, 2.0, 3H); ¹³C-NMR (CD₃OD): δ = 163.3, 126.0, 122.8, 119.7, 116.5, 72.4,

65.5, 64.0, 62.4, 51.7, 44.0, 39.9, 8.54. HRMS-ESI (*m/z*) calcd for C₁₃H₃₁N₄O [2M+NTf₂]⁺ 798.4169, found 798.1321, calcd for C₂F₆NO₄S₂ [NTf₂]⁻ 279.9173, 281.9131, found 279.8868, 281.9073.

B. Recycling of IL

For IL recycling, ionic liquid was isolated from the reaction mixture, first, by adding diethyl ether (After the reaction, IL cannot be dissolved in Et₂O.) to remove products. Then sufficient Na₂CO₃ was added into the aq. solution to liberate IL. The IL was recycled in the next run without further purification.

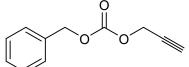
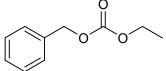
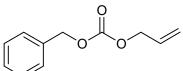
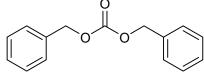

Entry	Runs	Amount of	f Time / h	Yield / $\%^{\rm B}$
		ROH, R'X, 1c	ROH, R'X, 1c	
1	Fresh	1.0, 0.5, 0.6	48	76
2	1 st	1.0, 0.5, 0.6	48	75
3	2 nd	1.0, 0.5, 0.6	48	75

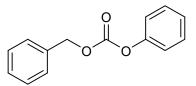
Table 1 Recycle of 1c.^A


^A Reaction conditions: CO₂ (1.0 MPa; carried out in a 16 mL stainless-steel autoclave). ^B Yields were determined

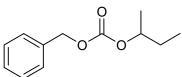
by ¹H-NMR respect to the amount of benzyl bromide used in the reaction.


C. Characterization data of product (2a-2h)


Benzyl propargyl carbonate (**2a**). Colourless liquid; Yield: 76%; ¹H-NMR (CDCl₃): δ = 7.41-7.32 (m, 5H, Ar*H*), 5.20 (s, 2H, Ph*CH*₂O-), 4.74 (d, *J* = 2.5, 2H, -O*CH*₂-CCH), 2.52 (t, *J* = 2.5, 1H, -C*CH*); ¹³C-NMR (CDCl₃): δ = 154.54 (C=O), 134.88 (Ar), 128.67 (Ar), 128.63 (Ar), 128.38 (Ar), 75.72 (CCH), 70.12 (Ph*CH*₂O-), 55.36 (-O*CH*₂CCH); HRMS-ESI (*m*/*z*) calcd for C₁₁H₁₀O₃ [M+NH₄]⁺ 208.0974, found 208.0972.

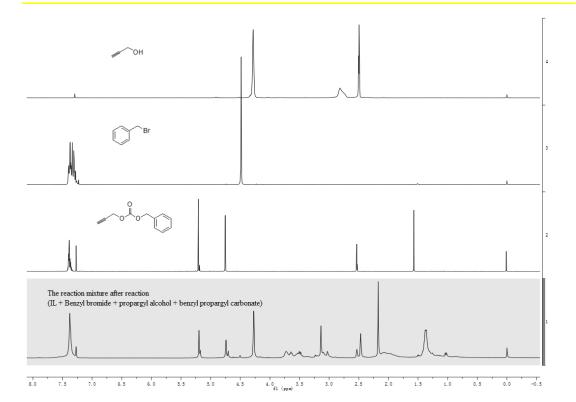

Benzyl ethyl carbonate (**2b**). Colourless liquid; Yield: 84%; ¹H-NMR (CDCl₃): δ = 7.45-7.28 (m, 5H, Ar*H*), 5.16 (s, 2H, Ph*CH*₂O-), 4.21 (q, *J* = 7.1, 2H, CH₃*CH*₂-), 1.31 (t, *J* = 7.1, 3H, C*H*₃*CH*₂-); ¹³C-NMR (CDCl₃): δ = 155.14 (C=O), 135.35 (Ar), 128.59 (Ar), 128.49 (Ar), 128.31 (Ar), 69.44 (Ph*CH*₂O-), 64.14 (-O*CH*₂CH₃), 14.26 (-OCH₂*CH*₃); HRMS-ESI (*m/z*) calcd for C₁₀H₁₂O₃ [M+NH₄]⁺ 198.1130, found 198.1133.

Allyl benzyl carbonate (**2c**). Colourless liquid; Yield: 81%; ¹H-NMR (CDCl₃): δ = 7.44-7.29 (m, 5H, Ar*H*), 5.93 (ddt, *J* = 17.2, 10.4, 5.8, 1H, -*CH*=CH₂), 5.42-5.22 (m, 2H, -CH=*CH*₂), 5.17 (s, 2H, Ph*CH*₂O-), 4.64 (dt, *J* = 5.8, 1.4, 2H, -*CH*₂CH=CH₂); ¹³C-NMR (CDCl₃): δ = 154.97 (C=O), 135.35 (Ar), 131.53 (-*CH*=CH₂), 128.60 (Ar), 128.54 (Ar), 128.33 (Ar), 118.95 (-CH=*CH*₂), 69.66 (Ph*CH*₂O-), 68.58 (-O*CH*₂CH=CH₂); HRMS-ESI (*m*/*z*) calcd for C₁₁H₁₂O₃ [M+NH₄]⁺ 210.1130, found 210.1131.

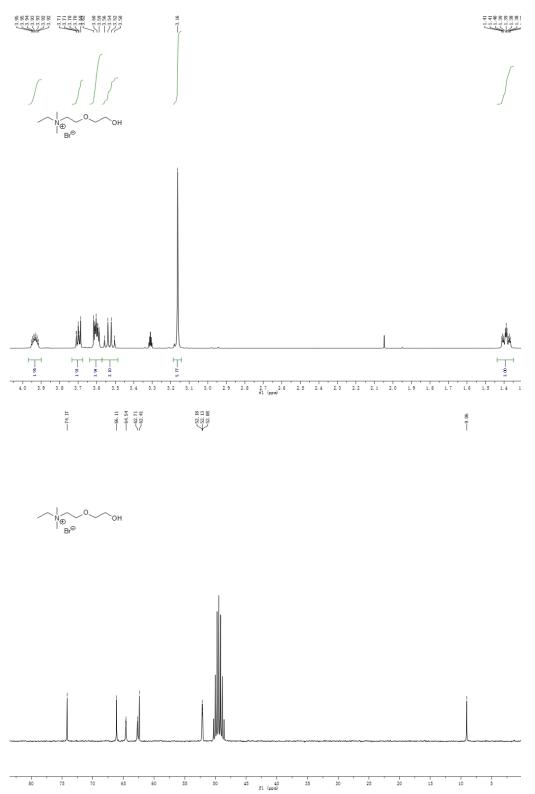


Dibenzyl carbonate (**2d**). Colourless liquid; Yield: 85%; ¹H-NMR (CDCl₃): δ = 7.45-7.28 (m, 10H, Ar*H*), 5.17 (s, 4H, Ph*CH*₂O-); ¹³C-NMR (CDCl₃): δ = 155.10 (C=O), 135.18 (Ar), 128.59 (Ar), 128.55 (Ar), 128.33 (Ar), 69.74 (Ph*CH*₂O-); HRMS-ESI (*m*/*z*) calcd for C₁₅H₁₄O₃ [M+NH₄]⁺ 260.1287, found 260.1279.

Benzyl phenyl carbonate (2e). White solid; Yield:


83%; ¹H-NMR (CDCl₃): δ = 7.47-7.26 (m, 7H, Ar*H*), 7.02-6.93 (m, 3H, Ar*H*), 5.07 (s, 2H, Ph*CH*₂O-); ¹³C-NMR (CDCl₃): δ = 158.80 (C=O), 137.09 (Ar), 129.48 (Ar), 128.58 (Ar), 127.94 (Ar), 127.48 (Ar), 114.86 (Ar), 69.93 (Ph*CH*₂O-); HRMS-ESI (*m*/*z*) calcd for C₁₄H₁₂O₃ [M+H]⁺ 229.0865, found 229.0861.

Benzyl *s*-butyl carbonate (**2f**). Colourless liquid; Yield: 67%; ¹H-NMR (CDCl₃): $\delta = 7.47$ -7.28 (m, 5H, Ar*H*), 5.15 (s, 2H, Ph*CH*₂O-), 4.72 (dd, $J = 12.6, 6.3, 1H, -OCH(CH_3)CH_2CH_3$), 1.73-1.52 (m, 2H, -OCH(CH₃)*CH*₂CH₃), 1.27 (d, $J = 6.3, 3H, -OCH(CH_3)CH_2CH_3$), 0.92 (t, $J = 7.5, 3H, -OCH(CH_3)CH_2CH_3$); ¹³C-NMR (CDCl₃): $\delta = 154.89$ (C=O), 135.48 (Ar), 128.56 (Ar), 128.42 (Ar), 128.26 (Ar), 76.80 (-OCH(CH_3)CH_2CH_3), 69.28 (Ph*CH*₂O-), 28.76 (-OCH(CH₃)*CH*₂CH₃), 19.36 (-OCH(*CH*₃)*CH*₂CH₃), 9.57 (-OCH(CH₃)*CH*₂*CH*₃); HRMS-ESI (*m*/*z*) calcd for C₁₂H₁₆O₃ [M+NH4]⁺ 226.1433, found 226.1435.


1, 3-Dioxan-2-one (**2h**). White solid; Yield: 92%; ¹H-NMR (CDCl₃): $\delta = 4.46$ (t, 4H, -OCH₂), 2.15 (dq, J = 11.5, 5.7, 2H, -OCH₂CH₂CH₂O-); ¹³C-NMR (CDCl₃): $\delta = 148.43$ (C=O), 67.90 (CH₂O-), 21.77 (-OCH₂CH₂CH₂O-).

D. Copies of ¹H NMR spectra of benzyl bromide, propargyl alcohol, benzyl propargyl carbonate and reaction mixture.

E. Copies of ¹H and ¹³C NMR spectra of new products

Fig. S1: NMR spectra of (5-Hydroxy-3-oxapentyl)dimethylethylammonium bromide (3).

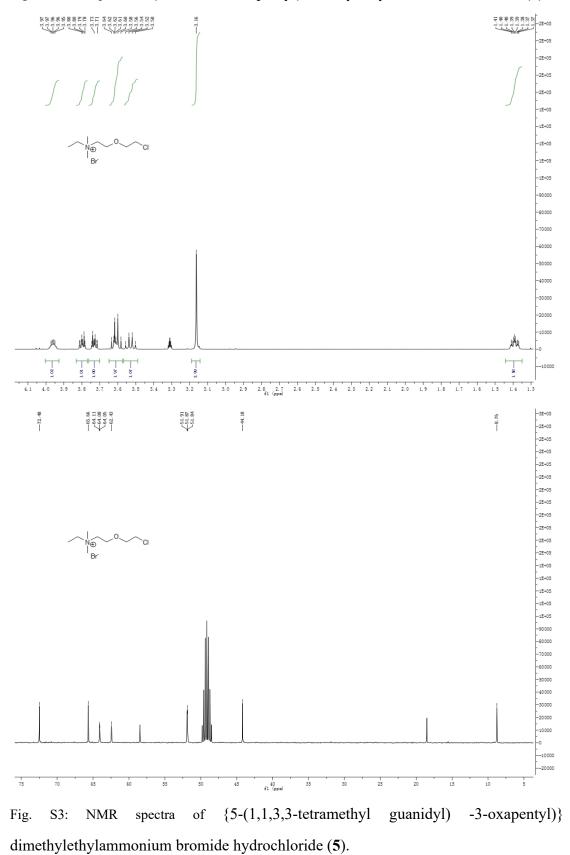


Fig. S2: NMR spectra of (5-Chloro-3-oxapentyl)dimethylethylammonium bromide (4).

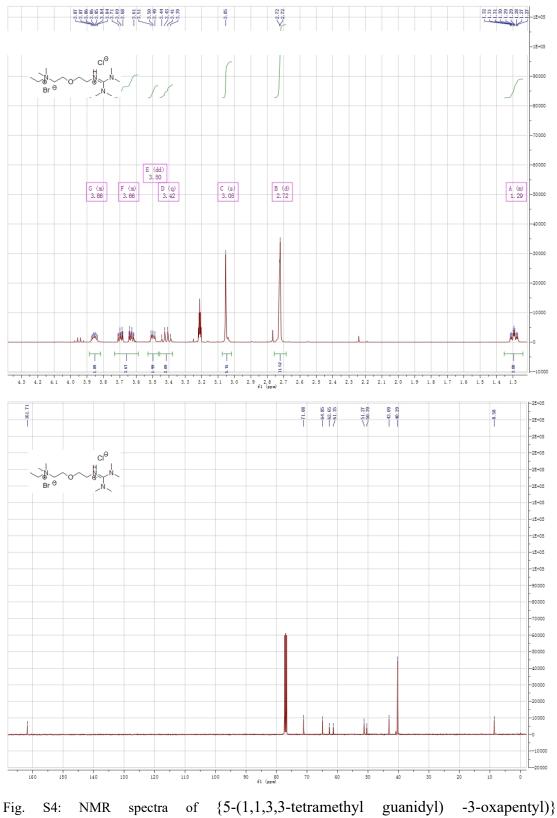
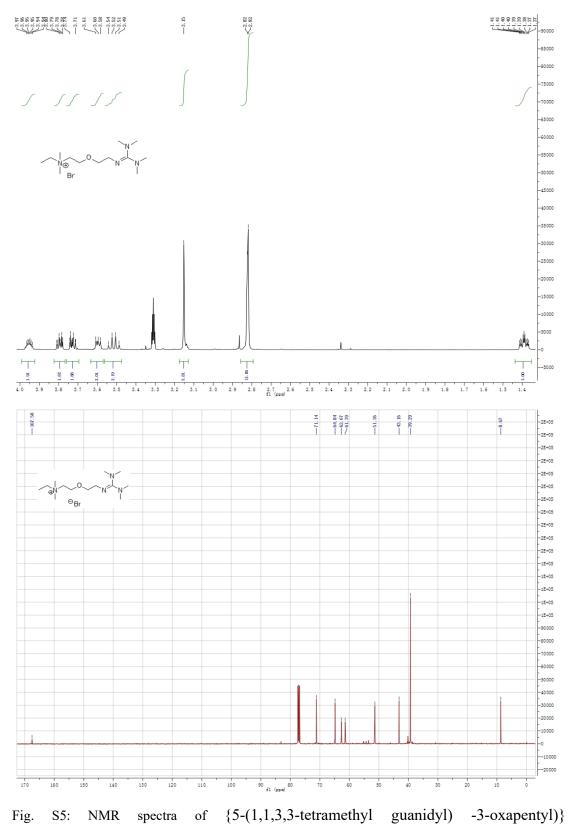



Fig. S4: NMR spectra of {5-(1,1,3,3-tetramethyl guanidyl) -3-oxapentyl) dimethylethylammonium bromide (6).

dimethylethylammonium bis{(trifluoromethyl)sulfonyl}amide (1d).

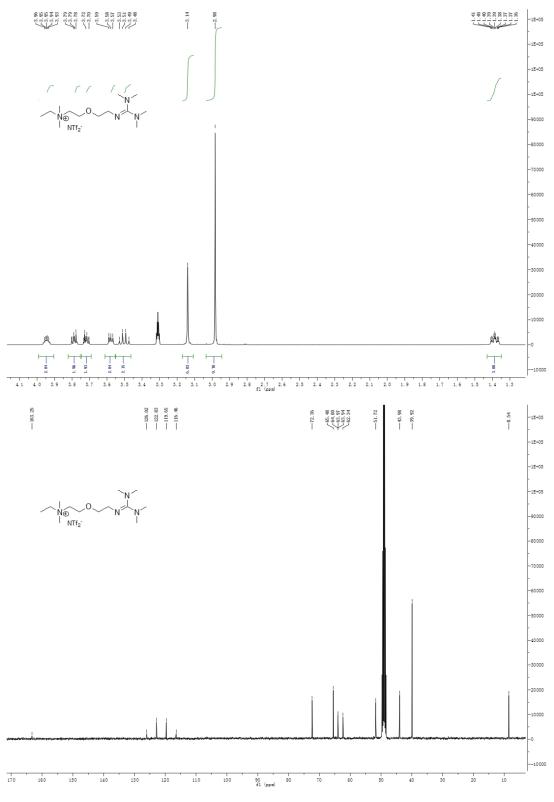
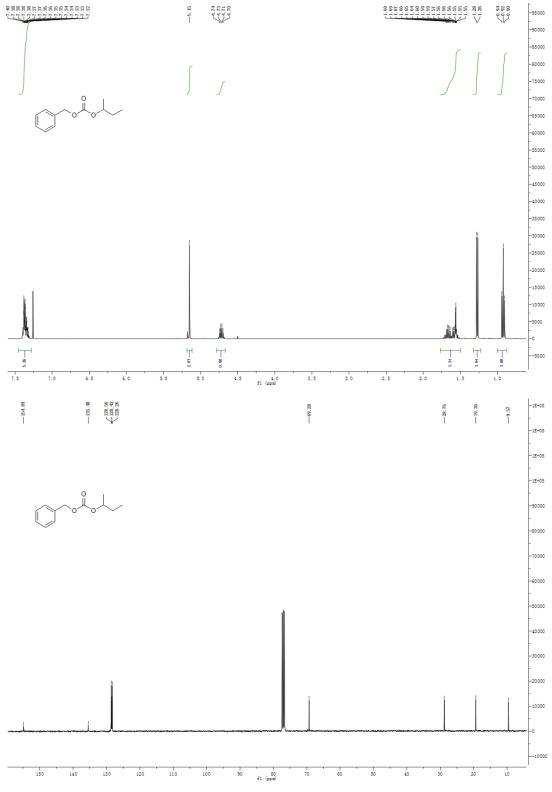



Fig. S6: NMR spectra of benzyl *s*-butyl carbonate (**2f**).

Reference:

1. S. A. Forsyth, U. Fröhlich, P. Goodrich, H. Q. N. Gunaratne, C. Hardacre, A. McKeown and K. R. Seddon, *New J. Chem.*, 2010, **34**, 723-731.