10.1071/CH18308_AC

©CSIRO 2018

Australian Journal of Chemistry 2018, 71(11), 890-901

Supplementary Material A Fluorecent Chemosensor for Zn²⁺ ion Based on a C₃-Symmetrical and Pre-organized 2,2',2''-Nitrilotribenzoic Acid Material

Wenguang Wei,^{A,B} Yao Jin,^{A,B} Tao Han,^{A,B} Bin Du,^{A,B,C} Xiujuan Zhi,^{A,B} Chaojun Wei,^{A,B} and Sichun Yuan^{A,B,C}

^ABeijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206, China.

^BFaculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.

^CCorresponding authors. Email: Bindu80@bua.edu.cn; ysc@bua.edu.cn

Fig. S1 Absorption and emission spectrum of 4 (3.5×10^{-5} M, λ_{ex} = 325 nm) in DMSO after addition of salt with the ratio of [salt]/[4](30:1).

Fig. S2 Absorption and emission spectrum of $4 (4 \times 10^{-5} \text{ M}, \lambda_{ex}= 325 \text{ nm})$ in THF after addition of salt sulfate with the ratio of [salt]/[4](30:1).

Fig. S3 Absorbance and fluorescence of 4 containing 12 equiv. of ZnSO₄ (a and b in DMSO, 3.5×10^{-5} M, λ_{ex} = 325 nm) exposed to 12 equiv. of various metal ions.

Fig. S4 Absorption and emission spectrum change of 4 (5 × 10⁻⁵ M, λ_{ex} = 325 nm) in MeOH after addition of Znic sulfate with the different equiv (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8 equiv).

Fig. S5. Absorbance and fluorescence spectrum of 4 containing 12 equiv. of ZnSO₄ or CdSO₄ (in MeOH, 5×10^{-5} M), the spectrum change of 4 containing 12 equiv. of CdSO₄ with subsequent addition of 12 equiv. of ZnSO₄(c and e), and the spectrum change of 4 containing 12 equiv. of ZnSO₄ with subsequent addition of 12 equiv. of CdSO₄(d and f).

Fig. S6 Absorption and Emission spectrum of 4 in DMSO after addition of MgSO₄ with the different ratio of [salt]/[4](a and b), under the condition of an invariant total concentration (5×10^{-5} M, λ_{ex} = 325 nm). A Job plot analysis between 4 and MgSO₄ (c and d).

Fig. S7 Emission spectrum (a) of 4 in DMSO after addition of NiSO4 with the different ratio of

[salt]/[4], under the condition of an invariant total concentration (5 \times 10⁻⁵ M, λ_{ex} = 325 nm).

Fig. S8 Emission spectrum of **4** in DMSO after addition of ZnSO₄ with the different ratio of [salt]/[**4**], under the condition of an invariant total concentration (5×10^{-5} M, λ_{ex} = 325 nm).

Fig. S9 Absorbance and emission spectrum of **1** in DMSO after addition of Zn^{2+} with the different ratio of [1]/[salt], under the condition of an invariant total concentration (3.5×10^{-4} M, λ_{ex} = 325 nm).

Fig. S10 Absorption and emission spectrum of **4** (3.5×10^{-5} M, a and b, λ_{ex} = 325 nm) in DMSO after addition of sodium sulfate with the different ratio of [SO₄²⁻]/[COOH]

Fig. S11 The ¹H-NMR spectrum of 4 (300 MHz, d₆-DMSO) with the addition of 3 equiv. of Na₂SO₄ in different ratio.

Fig. S12 The ESI (negative) spectrum of **4** in the presence of Mg²⁺, Cu²⁺, Fe²⁺, Zn²⁺ (as sulfate salt) in DMSO

Fig. S13 The HRMS (ESI-TOF) spectrum of [4+Zn-3H]⁻ complex

Fig. S14 The HRMS (ESI-TOF) spectrum of [4+Cu-3H]⁻ complex

Fig. S15 Absorption and emission spectrum of 4 in DMSO $(3.5 \times 10^{-5} \text{M}, \lambda_{ex} = 325 \text{ nm})$ and MeOH $(4 \times 10^{-5} \text{ M})$ after addition of OH⁻ anion with the ratio of [OH⁻]/[4] (30:1)

Fig. S16 The ¹H and ¹³C NMR spectra of **1 in** Methanol-D₄

Fig. S18 The ¹H and ¹³C NMR spectra of **3 in CDCl**₃

Fig. S19 The ¹H and ¹³C NMR spectra of 4 in d_6 -DMSO