## Supplementary Material

## Synthesis of Lanthanoid Complexes from $\mathrm{Ln}_{2} \mathrm{O}_{3}$ and Diatrizoic Acid

Guillaume Bousrez, ${ }^{A}$ Philip C. Andrews, ${ }^{B}$ Peter C. Junk, ${ }^{A},{ }^{C}$ Dominique T. Thielemann, ${ }^{B}$ and Jun Wang ${ }^{\text {A }}$
${ }^{\text {A College of }}$ Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
${ }^{B}$ School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
${ }^{c}$ Corresponding author. Email: peter.junk@jcu.edu.au

EDS spectra for all complexes.


Figure S1. EDS of compound 1, $\left[\mathrm{La}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately $1: 9$ between lanthanum and iodine.


Figure S2. EDS of compound 2, $\left[\mathrm{Nd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately 1:9 between neodymium and iodine.


Figure S3. EDS of compound 3, $\left[\mathrm{Sm}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately 1:9 between samarium and iodine.


Figure S4. EDS of compound 4, $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately $1: 9$ between europium and iodine.


Figure S5. EDS of compound $5,\left[\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][D T A]_{3}$, verifying a ratio of approximately $1: 9$ between gadolinium and iodine.


Figure S6. EDS of compound 6, $\left[\mathrm{Dy}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately $1: 9$ between dysprosium and iodine.


Figure S7. EDS of compound $7,\left[\mathrm{Ho}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately $1: 9$ between holmium and iodine.


Figure S8. EDS of compound 8, $\left[\operatorname{Er}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][D T A]_{3}$, verifying a ratio of approximately $1: 9$ between erbium and iodine.


Figure S9. EDS of compound $9,\left[\mathrm{Yb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately 1:9 between ytterbium and iodine.


Figure S10. EDS of compound 10, $\left[\mathrm{Lu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right][\mathrm{DTA}]_{3}$, verifying a ratio of approximately 1:9 between lutetium and iodine.

Table S1: Hydrogen bonds for complexes 1a, 4a and 6a

|  | $\mathbf{1 a}$ | $\mathbf{4 a}$ | $\mathbf{6 a}$ |
| :--- | :--- | :--- | :--- |
| Bond or angle | $(\AA \AA)$ or $\left({ }^{\circ}\right)$ | $(\AA)$ or $\left({ }^{\circ}\right)$ | $(\AA)$ or $\left({ }^{\circ}\right)$ |
| N1-H1 | 1.002 | 0.988 | 0.989 |
| $\mathrm{H} 1-\mathrm{O} 5$ | 1.815 | 1.860 | 1.861 |
| N1-H1-O5 | 168.70 | 163.61 | 163.93 |
| N2-H2 | 0.999 | 0.997 | 0.998 |
| H2-O10 | 1.783 | 1.799 | 1.790 |
| N2-H2-O10 | 173.79 | 170.44 | 171.64 |
| O6-H3B | 2.050 | 2.028 | - |
| H3B-O3 | 0.930 | 0.930 | - |
| O6-H3B-O3 | 129.33 | 131.84 | - |
| O6-H4A | 2.197 | 1.922 | 1.844 |
| H4A-O4 | 0.930 | 0.930 | 0.930 |
| O6-H4A-O4 | 115.6 | 141.17 | 156.31 |

Table S2: Hydrogen bonds for complex 6

| Bond or angle | $(\AA)$ or $\left({ }^{\circ}\right)$ |
| :--- | :--- |
| O15-H15A | 0.903 |
| H15A-O11 | 1.873 |
| O15-H15A-O11 | 157.80 |
| O16-H16A | 0.752 |
| H16A-O22 | 2.035 |
| O16-H16A-O22 | 164.61 |
| O17-H17A | 0.888 |
| H17A-O11 | 1.897 |
| O17-H17A-O11 | 157.80 |
| O17-H17B | 0.881 |
| H17B-O22 | 1.836 |
| O17-H17B-O22 | 175.81 |
| O18-H18A | 0.870 |
| H18A-O10 | 2.081 |
| O18-H18A-O10 | 169.09 |
| O19-H19A | 1.014 |
| H19A-O12 | 1.712 |
| O19-H19A-O12 | 157.48 |
| O21-H21B | 0.896 |
| H21B-O5 | 1.842 |
| O21-H21B-O5 | 165.82 |
| O22-H22D | 0.719 |
| H22D-O7 | 2.065 |
| O22-H22D-O7 | 176.02 |
| O23-H23B | 0.894 |
| H23B-O21 | 1.892 |
| O23-H23B-O21 | 171.69 |
| O24-H24A | 0.979 |
| H24A-O7 | 1.835 |
| O24-H24A-O7 | 147.79 |
| O24-H24B | 0.694 |
| H24B-O8 | 2.159 |
| O24-H24B-O8 | 158.75 |
| O25-H25A | 0.909 |
| H25A-O24 | 1.827 |
| O25-H25A-O24 | 163.57 |
| O26-H26A | 0.854 |
| H26A-O23 | 1.942 |
| O26-H26A-O23 | 176.34 |
| O27-H27B | 0.884 |
| H27B-O12 | 1.868 |
| O27-H27B-O12 | 174.42 |
| N2-H2 | 0.860 |
| H2-O6 | 1.964 |
| N2-H2-O6 | 174.96 |
| N3-H3 | 1.948 .26 |
| H3-O3 |  |
| N3-H3-O3 |  |

