Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Fungus-mediated Biological Approaches Towards ‘Green’ Synthesis of Oxide Nanomaterials*

Vipul Bansal A B , Rajesh Ramanathan A and Suresh K. Bhargava A
+ Author Affiliations
- Author Affiliations

A School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Vic. 3001, Australia.

B Corresponding author. Email: vipul.bansal@rmit.edu.au




Vipul Bansal is currently a Senior Lecturer of Bio-nanotechnology at RMIT University and an APD Fellow of the Australian Research Council. Dr Bansal was awarded a Ph.D. degree in 2007 from National Chemical Laboratory, India towards ‘Fungus-mediated biological synthesis of oxide nanomaterials’ in mentorship of Dr Murali Sastry. Thereafter, in 2007, he joined Professor Frank Caruso’s Group at the University of Melbourne as a Postdoctoral Research Fellow and investigated biocompatible polymer nanocapsules for drug-delivery applications. His current research interests focus around tailored synthesis of advanced multifunctional nanomaterials using green chemistry routes and biomimetics for catalysis, sensing, bio-imaging, and nanomedicine applications.



Rajesh Ramanathan obtained a Masters of Biotechnology Degree in 2006 from RMIT University, Australia, following which he worked in industry for a year. In 2009, he began his Ph.D. under the supervision of Dr Vipul Bansal at RMIT University, and was awarded an Australian Postgraduate Award to pursue his postgraduate studies. Rajesh’s research is focussed on biological and biomimetic approaches for the synthesis of metal and oxide nanomaterials.



Suresh K. Bhargava is currently the Professor of Industrial Chemistry and the Associate Pro-Vice Chancellor (International) of College of Science, Engineering and Technology at RMIT. He received his Ph.D. in 1982 under the supervision of Professor E. W. Abel and was examined by Sir Geoffrey Wilkinson (Nobel Laureate). In 2009, he was conferred Honoris Causa D.Sc. by Rajasthan University, India, presented by the President of India. He is a Fellow of both the Royal Society of Chemistry and the Royal Australian Chemical Institute. His current research interests are in inorganic and physical chemistry with special emphasis on applied nanotechnology.

Australian Journal of Chemistry 64(3) 279-293 https://doi.org/10.1071/CH10343
Submitted: 15 September 2010  Accepted: 8 November 2010   Published: 11 March 2011

Abstract

A promising avenue of research in materials science is to follow the strategies used by nature to fabricate ornate hierarchical materials. For many ages, organisms have been engaged in on-the-job testing to craft structural and functional materials and have evolved extensively to possibly create the best-known materials. Some of the strategies used by nature may well have practical implications in the world of nanomaterials. Therefore, the efforts to exploit nature’s ingenious work in designing strategies for nanomaterials synthesis has led to biological routes for materials synthesis. This review outlines the biological synthesis of a range of oxide nanomaterials that has hitherto been achieved using fungal biosynthesis routes. A critical overview of the current status and future scope of this field that could potentially lead to the microorganism-mediated commercial, large-scale, environmentally benign, and economically-viable ‘green’ syntheses of oxide nanomaterials is also discussed.


References

[1]  J.-M. Lehn, Resonance 1996, 1, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  V. Bansal, in Biochemical Sciences Division 2007, pp. 1–172 (National Chemical Laboratory: Pune).

[3]  J. Bradbury, PLoS Biol. 2004, 2, e306.
         | Crossref | GoogleScholarGoogle Scholar | 15486572PubMed |

[4]  R. Drum, R. Gordon, Trends Biotechnol. 2003, 21, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVKju7c%3D&md5=c6ceca1fc9bffdfbce6fe58cd17c8da3CAS | 12902165PubMed |

[5]  P. Lopez, C. Gautier, J. Livage, T. Coradin, Curr. Nanosci. 2005, 1, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1aktbw%3D&md5=c2f30afcd20a0e7a21893052d3b898cfCAS |

[6]  J. F. Stolz, S.-B. R. Chang, J. L. Kirschvink, Nature 1986, 321, 849.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  R. Frankel, R. Blakemore, R. Wolfe, Science 1979, 203, 1355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1CnsLg%3D&md5=61f86de2fdaac51bd7b8b564cfc00378CAS | 17780480PubMed |

[8]  D. Schüler, Int. Microbiol. 2002, 5, 209.
         | Crossref | GoogleScholarGoogle Scholar | 12497187PubMed |

[9]  M. Hildebrand, Chem. Rev. 2008, 108, 4855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGnsL%2FN&md5=de39ccb28be134caf5478b15904b3e8dCAS | 18937513PubMed |

[10]  N. Kroger, R. Deutzmann, M. Sumper, Science 1999, 286.

[11]  A. Woesz, J. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D. Morse, P. Fratzl, J. Mater. Res. 2006, 21, 2068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKnsbk%3D&md5=cf9ca3f7ebc757a4291442c5d5ca26eaCAS |

[12]  S. Schultze-Lam, G. Harauz, T. Beveridge, J. Bacteriol. 1992, 174, 7971.
         | 1:CAS:528:DyaK3sXns1OhtQ%3D%3D&md5=4c38bb0de35798e9b67097455a8d59b8CAS | 1459945PubMed |

[13]  R. L. Brutchey, D. E. Morse, Chem. Rev. 2008, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. C. Meldrum, H. Cölfen, Chem. Rev. 2008, 108, 4332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOrs77N&md5=9610d67ba21090f006ad0e303c42035fCAS | 19006397PubMed |

[15]  R. Y. Parikh, S. Singh, B. L. V. Prasad, M. S. Patole, M. Sastry, Y. S. Shouche, ChemBioChem 2008, 9, 1415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVehsLs%3D&md5=b26982881ff331bfd166b0a80aec4756CAS | 18491326PubMed |

[16]  K. N. Thakkar, S. S. Mhatre, R. Y. Parikh, Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVCgtLc%3D&md5=c9efcf81f6befc3a10fd9986651de31eCAS |

[17]  V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad, M. Sastry, J. Mater. Chem. 2005, 15, 2583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVSnurk%3D&md5=9c1564fc5ef952c9981c350f01be0f9eCAS |

[18]  K. B. Narayanan, N. Sakthivel, Adv. Colloid Interface Sci. 2010, 156, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Orsbg%3D&md5=b6846fc9ce254d55954948248ca0dbf6CAS | 20181326PubMed |

[19]  M. Sastry, A. Ahmad, M. I. Khan, R. Kumar, in Nanobiotechnology 2005, pp. 126–135 (Wiley-VCH: Weinheim).

[20]  D. Bhattacharya, R. K. Gupta, Crit. Rev. Biotechnol. 2005, 25, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Glt7rF&md5=d8e436d0b562612562c4c38d3c7cd7e7CAS | 16419617PubMed |

[21]  M. Dickerson, K. Sandhage, R. Naik, Chem. Rev. 2008, 108, 4935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqurvO&md5=e8c8b7fa881cedb3a1150596e7074b32CAS | 18973389PubMed |

[22]  D. Losic, J. G. Mitchell, N. H. Voelcker, Adv. Mater. 2009, 21.

[23]  D. Mandal, M. Bolander, D. Mukhopadhyay, G. Sarkar, P. Mukherjee, Appl. Microbiol. Biotechnol. 2006, 69, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlemurjI&md5=bb1b07c358ac95ed6f556a0a1a5fb71fCAS | 16317546PubMed |

[24]  H. Korbekandi, S. Iravani, S. Abbasi, Crit. Rev. Biotechnol. 2009, 29, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyjtLfP&md5=d75f91f506eafe83640d3b3f626a8048CAS | 19929319PubMed |

[25]  N. Krumov, I. Perner-Nochta, S. Oder, V. Gotcheva, A. Angelov, C. Posten, Chem. Eng. Technol. 2009, 32, 1026.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFehs7w%3D&md5=27a6fea1f253e91519ace33143fd8559CAS |

[26]  P. Mohanpuria, N. Rana, S. Yadav, J. Nanopart. Res. 2008, 10, 507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslCisA%3D%3D&md5=fa92b16c1e93313609f474bb07418414CAS |

[27]  M. Rai, A. Yadav, A. Gade, Crit. Rev. Biotechnol. 2008, 28, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGqt7fF&md5=a14c0e37d40aee5a5c7e84dd0a694d3bCAS | 19051106PubMed |

[28]  H. Aiking, K. Kok, H. Van Heerikhuizen, J. Van’t Riet, Appl. Environ. Microbiol. 1982, 44, 938.
         | 1:CAS:528:DyaL38XlslKmsrw%3D&md5=10f10da3e1f4b32d01b65305c6d1c761CAS | 16346119PubMed |

[29]  A. M. L. Van De Meene, J. D. Pickett-Heaps, J. Phycol. 2002, 38, 351.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. R. Stephen, S. J. Macnaughtont, Curr. Opin. Biotechnol. 1999, 10, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVSns70%3D&md5=655ab9321d97c860125ce3ebb04a7a5cCAS | 10361068PubMed |

[31]  T. J. Beveridge, M. N. Hughes, H. Lee, K. T. Leung, R. K. Poole, I. Savvaidis, S. Silver, J. T. Trevors, R. K. Poole, in Advances in Microbial Physiology 1996, pp. 177–243 (Academic Press: New York, NY).

[32]  R. K. Mehra, D. R. Winge, J. Cell. Biochem. 1991, 45, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnvVaqsA%3D%3D&md5=74ebfe3157766ffd1fc3a1aff9b42475CAS | 2005182PubMed |

[33]  S. Silver, Gene 1996, 179, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1WisLw%3D&md5=38469c48353a80e157dfe6321e110143CAS | 8991852PubMed |

[34]  D. A. Rouch, B. T. O. Lee, A. P. Morby, J. Ind. Microbiol. Biotechnol. 1995, 14, 132.
         | 1:CAS:528:DyaK2MXls1ajurw%3D&md5=778ac70658372054eb88eabdc7f772f9CAS |

[35]  J. E. Zumberge, A. C. Sigleo, B. Nagy, Miner. Sci. Eng. 1978, 10, 223.
         | 1:CAS:528:DyaE1MXht1Chtrk%3D&md5=a7b18bfce7556138dc5c6ebc349f5d3eCAS |

[36]  M. Hosea, B. Greene, R. McPherson, M. Henzl, M. Dale Alexander, D. W. Darnall, Inorg. Chim. Acta 1986, 123, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Wns7k%3D&md5=8c177ac1cbe69247efffedb8c3a345f4CAS |

[37]  R. N. Reese, R. K. Mehra, E. B. Tarbet, D. R. Winge, J. Biol. Chem. 1988, 263, 4186.
         | 1:CAS:528:DyaL1cXitFOqs7s%3D&md5=cb35a57722d8c580fa84f1628844317eCAS | 3346245PubMed |

[38]  C. T. Dameron, R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus, D. R. Winge, Nature 1989, 338, 596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitlSitbs%3D&md5=f2c30ce4eda02223e0bd67ab0e057b43CAS |

[39]  K. L. Temple, N. W. Le Roux, Econ. Geol. 1964, 59, 647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXks1Sltrk%3D&md5=bb386af764b5144873764c34908c6a67CAS |

[40]  T. J. Beveridge, R. G. Murray, J. Bacteriol. 1980, 141, 876.
         | 1:CAS:528:DyaL3cXhs1Snt7g%3D&md5=7e5723c7a0e97dae56949b0dfe3e4879CAS | 6767692PubMed |

[41]  R. P. Blakemore, D. Maratea, R. S. Wolfe, J. Bacteriol. 1979, 140, 720.
         | 1:CAS:528:DyaL3cXjslKmtA%3D%3D&md5=bd8ea2bf6c6a966493cdc2d09f3b0a7fCAS | 500569PubMed |

[42]  G. Southam, T. J. Beveridge, Geochim. Cosmochim. Acta 1996, 60, 4369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1Skuw%3D%3D&md5=1d646b29767710ad027d6734dbdb4d48CAS |

[43]  T. Klaus-Joerger, R. Joerger, E. Olsson, C.-G. Granqvist, Trends Biotechnol. 2001, 19, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFSr&md5=b603f044d3692fc1eb269d6063e04205CAS | 11146098PubMed |

[44]  T. Klaus, R. Joerger, E. Olsson, C.-G. Granqvist, Proc. Natl. Acad. Sci. USA 1999, 96, 13611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1OqsL8%3D&md5=8d37599501689220b86686491f42addfCAS |

[45]  B. Nair, T. Pradeep, Cryst. Growth Des. 2002, 2, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFaku78%3D&md5=f696d42cbb5009d525aec1d6bbc84304CAS |

[46]  D. Fortin, T. J. Beveridge, From Biology to Biotechnology and Medical Applications 2000 (Wiley-VCH: Weinheim).

[47]  D. P. Cunningham, L. L. Lundie, Appl. Environ. Microbiol. 1993, 59, 7.
         | 1:CAS:528:DyaK3sXns1ygsQ%3D%3D&md5=1d254de23926343406335671aaade9e3CAS | 8439169PubMed |

[48]  J. D. Holmes, P. R. Smith, R. Evans-Gowing, D. J. Richardson, D. A. Russell, J. R. Sodeau, Arch. Microbiol. 1995, 163, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvFegtrY%3D&md5=5df1c11d1a9eecdf15444fedb4c3a44aCAS | 7710328PubMed |

[49]  R. Joerger, T. Klaus, C. G. Granqvist, Adv. Mater. 2000, 12, 407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslCjsL4%3D&md5=313abd35b58ab1e06774c1f812492698CAS |

[50]  M. Labrenz, G. K. Druschel, T. Thomsen-Ebert, B. Gilbert, S. A. Welch, K. M. Kemner, G. A. Logan, R. E. Summons, G. D. Stasio, P. L. Bond, B. Lai, S. D. Kelly, J. F. Banfield, Science 2000, 290, 1744.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVOhtr8%3D&md5=c2ce3068477f7fc6e2fd078c9c32637fCAS | 11099408PubMed |

[51]  P. R. Smith, J. D. Holmes, D. J. Richardson, D. A. Russell, J. R. Sodeau, J. Chem. Soc., Faraday Trans. 1998, 94, 1235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFKjurg%3D&md5=a332ca9ebf9a19e97a0486293a76dabcCAS |

[52]  J. H. P. Watson, B. A. Cressey, A. P. Roberts, D. C. Ellwood, J. M. Charnock, A. K. Soper, J. Magn. Magn. Mater. 2000, 214, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVWqsL4%3D&md5=e98dadbd584661eb1e4e5128e10c65b4CAS |

[53]  J. H. P. Watson, D. C. Ellwood, A. K. Soper, J. Charnock, J. Magn. Magn. Mater. 1999, 203, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVCju70%3D&md5=cd5c700ac97e9e475b5bacc9bd68309fCAS |

[54]  A. P. Philipse, D. Maas, Langmuir 2002, 18, 9977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVCis7w%3D&md5=053f08459e6ecd5259f3d1de7d51eb30CAS |

[55]  Y. Roh, R. J. Lauf, A. D. McMillan, C. Zhang, C. J. Rawn, J. Bai, T. J. Phelps, Solid State Commun. 2001, 118, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslantr8%3D&md5=7d78e457704098f16458397c5474cd27CAS |

[56]  M. Kowshik, N. Deshmukh, W. Vogel, J. Urban, S. K. Kulkarni, K. M. Paknikar, Biotechnol. Bioeng. 2002, 78, 583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvV2mtbk%3D&md5=aaba7eebcd5a648afaeeac39d3eaa2c3CAS | 12115128PubMed |

[57]  M. Robinson, L. Brown, B. Hall, Biofouling 1997, 11, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVKqur0%3D&md5=50e640e9689d6973c758503f824fa588CAS |

[58]  P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Parishcha, P. V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Nano Lett. 2001, 1, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1OksL8%3D&md5=ec8948481a37abeeaa48501ea8beb191CAS |

[59]  P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Angew. Chem. Int. Ed. 2001, 40, 3585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Wgsrw%3D&md5=1f11e4545af9b334e80759acb4691c65CAS |

[60]  A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, M. Sastry, Colloids Surf. B 2003, 28, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlajsLk%3D&md5=14d9fdff93e58915874ef2717dc55b0cCAS |

[61]  P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar, M. Sastry, ChemBioChem 2002, 3, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWit78%3D&md5=31c320ffbaa53583949db3e6f82dd19dCAS | 12007181PubMed |

[62]  A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, J. Am. Chem. Soc. 2002, 124, 12108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Cku74%3D&md5=39f95b3b6900ed97969bed6db711a482CAS | 12371846PubMed |

[63]  A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, Langmuir 2003, 19, 3550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVygtLc%3D&md5=a466671ce76753b30519efec245030c7CAS |

[64]  S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Biotechnol. Prog. 2006, 22.

[65]  S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Nat. Mater. 2004, 3.
         | 14704772PubMed |

[66]  J. Huang, W. Wang, L. Lin, Q. Li, W. Lin, M. Li, S. Mann, Chem. Asian J. 2009, 4, 1050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2gt7k%3D&md5=bc27f3a2e8c849e4061632de90b5cd42CAS | 19472293PubMed |

[67]  G. Singaravelu, J. S. Arockiamary, V. G. Kumar, K. Govindaraju, Colloids Surf. B 2007, 57.

[68]  D. Klages, I. Meyer, W. Schwartz, R. Naìveke, Z. Allg. Mikrobiol. 1981, 21.

[69]  H. Kiel, W. Schwartz, Z. Allg. Mikrobiol. 1980, 20, 627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmsVensL4%3D&md5=31437bc6cef160f36dc3b9651601ae32CAS | 7222743PubMed |

[70]  N. Kröger, C. Bergsdorf, M. Sumper, EMBO J. 1994, 13, 4676.
         | 7925309PubMed |

[71]  N. Kröger, R. Deutzmann, C. Bergsdorf, M. Sumper, Proc. Natl. Acad. Sci. USA 2000, 97, 14133.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
         | Crossref | GoogleScholarGoogle Scholar | 10550045PubMed |

[73]  N. Kröger, R. Deutzmann, M. Sumper, J. Biol. Chem. 2001, 276, 26066.
         | Crossref | GoogleScholarGoogle Scholar | 11349130PubMed |

[74]  N. Kröger, S. Lorenz, E. Brunner, M. Sumper, Science 2002, 298, 584.
         | Crossref | GoogleScholarGoogle Scholar | 12386330PubMed |

[75]  A. J. Milligan, F. M. M. Morel, Science 2002, 297, 1848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFGgsrs%3D&md5=01d28be9f6dfc78fd55d53881b3580bcCAS | 12228711PubMed |

[76]  K. Shimizu, J. Cha, G. D. Stucky, D. E. Morse, Proc. Natl. Acad. Sci. USA 1998, 95, 6234.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3mtleguw%3D%3D&md5=e29fea310d9491b5337ec0f0af3cccb4CAS |

[77]  J. L. Sumerel, W. Yang, D. Kisailus, J. C. Weaver, J. H. Choi, D. E. Morse, Chem. Mater. 2003, 15, 4804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFeisrw%3D&md5=46af48340e13d64af3f2204f698d936dCAS |

[78]  C. Perry, T. Keeling-Tucker, J. Biol. Inorg. Chem. 2000, 5, 537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Gktbo%3D&md5=40b57786b6ed515f609deac6d4a3452dCAS | 11085644PubMed |

[79]  B. E. Volcani, Biochemistry of Silicon and Related Problems 1978 (Plenum Press: New York, NY).

[80]  J. N. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature 2000, 403, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1CitA%3D%3D&md5=ca3cef817f9793c88f76c9c5ca9a3361CAS | 10659843PubMed |

[81]  A. H. Heuer, J. Am. Ceram. Soc. 1987, 70, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1Wku78%3D&md5=5206804317ae8c593d82d192f2d1b3d0CAS |

[82]  R. C. Garvie, R. H. Hannink, R. T. Pascoe, Nature 1975, 258, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1Gktbk%3D&md5=73a7ce1e96da24b0bc2252b907c5ca82CAS |

[83]  H. Xu, D.-H. Qin, Z. Yang, H.-L. Li, Mater. Chem. Phys. 2003, 80, 524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivV2ru78%3D&md5=9f9d5e97f215194297a68400459e8603CAS |

[84]  P. D. Southon, J. R. Bartlett, J. L. Woolfrey, B. Ben-Nissan, Chem. Mater. 2002, 14, 4313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFKrsrg%3D&md5=0a2d89e79d4d7e01639d279bd2c94796CAS |

[85]  H.-J. Noh, D.-S. Seo, H. Kim, J.-K. Lee, Mater. Lett. 2003, 57, 2425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12lt70%3D&md5=236ea2d81a6862f448f31fd11449486eCAS |

[86]  V. Bansal, D. Rautaray, A. Ahmad, M. Sastry, J. Mater. Chem. 2004, 14, 3303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSluro%3D&md5=2b732c03d9ea805b3f7fda5584cf62dfCAS |

[87]  R. K. Iler, The Chemistry of Silica 1979 (John Wiley & Sons: New York, NY).

[88]  V. Bansal, A. Ahmad, M. Sastry, J. Am. Chem. Soc. 2006, 128, 14059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKitbzN&md5=393da98027bbed511e4ac351063ab1dfCAS | 17061888PubMed |

[89]  S. Mann, G. Ozin, Nature 1996, 382.
         | Crossref | GoogleScholarGoogle Scholar | 8684472PubMed |

[90]  H. Lowenstam, Science 1981, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[91]  S. Patwardhan, N. Mukherjee, M. Steinitz-Kannan, S. Clarson, Chem. Commun. 2003, 2003.

[92]  A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, Angew. Chem. Int. Ed. 2004, 43, 2286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslOntrg%3D&md5=d3fd6a2f93d8d30d1272df4d92d8c27aCAS |

[93]  Q. Deng, M. Wei, X. Ding, L. Jiang, B. Ye, K. Wei, Chem. Commun. 2008, 3657.
         | 1:CAS:528:DC%2BD1cXptVKmur8%3D&md5=a3e2bb3679819f139e41d01c29304bdbCAS |

[94]  D. Lovley, J. Stolz, G. Nord, E. Phillips, Nature 1987, 330, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjsVGgtA%3D%3D&md5=39cdef75abb3f8b8c34322b01a57dfffCAS |

[95]  A. Pazur, C. Schimek, P. Galland, Central Eur. J. Biol. 2007, 2, 597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot12htw%3D%3D&md5=ffa5172e31ea6b6283e1c644d7afcf7bCAS |

[96]  A. Bharde, D. Rautaray, V. Bansal, A. Ahmad, I. Sarkar, M. Seikh, S. M. Yusuf, M. Sanyal, M. Sastry, Small 2006, 2, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWqsrjF&md5=0a404b35faeea27352af40aabd675145CAS | 17193569PubMed |

[97]  A. Dumestre, T. Chone, J.-M. Portal, M. Gerard, J. Berthelin, Appl. Environ. Microbiol. 1997, 63, 2729.
         | 1:CAS:528:DyaK2sXktlersLY%3D&md5=bdc1df92eb8dfde01d537601bc557eabCAS | 16535647PubMed |

[98]  M. Valix, J. Y. Tang, R. Malik, Miner. Eng. 2001, 14, 499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVegtLo%3D&md5=36e2d01df5c3390791845e1dd7e8a243CAS |

[99]  V. Bansal, P. Poddar, A. Ahmad, M. Sastry, J. Am. Chem. Soc. 2006, 128, 11958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVCitrc%3D&md5=b09f3b8d91050ad9efca8c4411fab753CAS | 16953637PubMed |

[100]  I. A. Thompson, D. M. Huber, C. A. Guest, D. G. Schulze, Environ. Microbiol. 2005, 7, 1480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGnurvI&md5=4c05849663631b2d2ae4c6c24fae85d0CAS | 16104870PubMed |

[101]  N. Miyata, Y. Tani, K. Iwahori, M. Soma, FEMS Microbiol. Ecol. 2004, 47, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVymsg%3D%3D&md5=dc0574d7d5206103119f9a54901fe853CAS | 19712351PubMed |

[102]  N. Miyata, Y. Tani, K. Maruo, H. Tsuno, M. Sakata, K. Iwahori, Appl. Environ. Microbiol. 2006, 72, 6467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFalsL3P&md5=d3e29824582bfc1c4112f9ffc7cf73e4CAS | 17021194PubMed |

[103]  H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, L. D. Zhang, Appl. Phys. Lett. 2005, 87, 231916.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  C. N. R. Rao, G. V. S. Rao, S. Ramdas, J. Phys. Chem. 1969, 73, 672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtV2rtb0%3D&md5=1435e8fd03f0edd4c491536b63795b11CAS |

[105]  N. V. Skorodumova, A. K. Jonsson, M. Herranen, M. Stromme, G. A. Niklasson, B. Johansson, S. I. Simak, Appl. Phys. Lett. 2005, 86, 241910.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  I. Uddin, S. Adyanthaya, A. Syed, K. Selvaraj, A. Ahmad, P. Poddar, J. Nanosci. Nanotechnol. 2008, 8, 3909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKmsLjK&md5=afca2c2a2ae1aa0b81efb580aa061cf0CAS | 19049149PubMed |

[107]  H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, L. D. Zhang, Appl. Phys. Lett. 2005, 87, 231916.
         | Crossref | GoogleScholarGoogle Scholar |

[108]  W. C. Schumb, E. S. Rittner, J. Am. Chem. Soc. 1943, 65, 1055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3sXivVOqsw%3D%3D&md5=a143986d8bb006b92b4726e0af7f908bCAS |

[109]  A. Ahmad, T. Jagadale, V. Dhas, S. Khan, S. Patil, R. Pasricha, V. Ravi, S. Ogale, Adv. Mater. 2007, 19, 3295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7nK&md5=3e05b05d0c7fc64b7e364f0d062d7cb0CAS |

[110]  A. S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 2000, 4, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVGqtw%3D%3D&md5=dda12ea10fa005dcacb92f0798357d1eCAS |

[111]  T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, Annu. Rev. Mater. Sci. 2000, 30, 263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVygtro%3D&md5=3063e4a70f59c04f4c24e3a76e6ce88bCAS |

[112]  G. H. Jonker, Solid-State Electron. 1964, 7, 895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXis1Gltw%3D%3D&md5=db2564d8eacc230150f4f4c9b46895c5CAS |

[113]  C. D. Chandler, C. Roger, M. J. Hampden-Smith, Chem. Rev. 1993, 93, 1205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Ciu7Y%3D&md5=12e181fbead35b8887a1191265a3ac7aCAS |

[114]  M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, S. Wada, J. Appl. Phys. 2005, 98, 014313.
         | Crossref | GoogleScholarGoogle Scholar |

[115]  Y. Ma, E. Vileno, S. L. Suib, P. K. Dutta, Chem. Mater. 1997, 9, 3023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVCmt70%3D&md5=cbd1bafc128742b86b3b2cfe22636e6eCAS |

[116]  S. Chattopadhyay, P. Ayyub, V. R. Palkar, M. Multani, Phys. Rev. B 1995, 52, 13177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpt1CisL8%3D&md5=a6368616a820878ddbf7030e847a295dCAS |

[117]  F. S. Yen, C. T. Chang, Y. H. Chang, J. Am. Ceram. Soc. 1990, 73, 3422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXivVOguw%3D%3D&md5=24bfbaefe03e7bb7b1cc418c248b2030CAS |

[118]  R. L. Brutchey, E. S. Yoo, D. E. Morse, J. Am. Chem. Soc. 2006, 128, 10288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFCqu7o%3D&md5=61d3ad19f18b3c05217c215a77c13d53CAS | 16881660PubMed |

[119]  T. J. Coutts, D. L. Young, X. N. Li, MRS Bull. 2000, 25, 58.
         | 1:CAS:528:DC%2BD3cXmsFSlsLw%3D&md5=b5d1cd26f8be4db79b89599e77469cdcCAS |

[120]  H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 1997, 389, 939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVamu78%3D&md5=998deffc942fd0f97e2bf60cd19ae5c9CAS |

[121]  H. Yanagi, S.-i. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys. 2000, 88, 4159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms12gsb0%3D&md5=cf864ad24bdf29f96ceb836cff1fca06CAS |

[122]  X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, C. N. Xu, Appl. Phys. Lett. 2004, 85.

[123]  L. Stryer, Biochemistry 1999 (W. H. Freeman and Co.: New York, NY).

[124]  N. Hall, A. B. Tomsett, Microbiology 2000, 146, 1399.
         | 1:CAS:528:DC%2BD3cXktlWmtrs%3D&md5=ce58aee99a4eda78220546ce373d5408CAS | 10846218PubMed |

[125]  T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, Appl. Microbiol. Biotechnol. 2003, 63, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOnt7o%3D&md5=c6cb38192589576cc5eff130993d3f64CAS | 14566432PubMed |

[126]  G. J. Olson, J. A. Brierley, C. L. Brierley, Appl. Microbiol. Biotechnol. 2003, 63, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOnt7s%3D&md5=26e05b370d6914c7b6b870f60be21f7fCAS | 14566430PubMed |

[127]  K. Bosecker, FEMS Microbiol. Rev. 1997, 20, 591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltl2msbc%3D&md5=d246c3412bb4ce3677faa9e7718b1ac0CAS |

[128]  D. E. Rawlings, J. Ind. Microbiol. Biotechnol. 1998, 20, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlersLw%3D&md5=4f391c8f14ea1e9094180d1c1cbdc3c9CAS |

[129]  K. A. Natarajan, Biogeochemistry of Rivers in Tropical South and South East Asia 1999 (Island Press: Hamburg).

[130]  C. N. Mulligan, M. Kamali, J. Chem. Technol. Biotechnol. 2003, 78, 497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslyjur8%3D&md5=a5156084ced3e1ee90886a537bcca817CAS |

[131]  M. E. K. Henderson, R. B. Duff, Eur. J. Soil Sci. 1963, 14, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXis1Kmuw%3D%3D&md5=4b9c0e3f70592b3f9f14ee25cc23d099CAS |

[132]  V. Bansal, A. Sanyal, D. Rautaray, A. Ahmad, M. Sastry, Adv. Mater. 2005, 17, 889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFWitbY%3D&md5=b59ff36841afcc0875b7e55fc42f5e7cCAS |

[133]  V. Bansal, A. Syed, S. K. Bhargava, A. Ahmad, M. Sastry, Langmuir 2007, 23, 4993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFynt7c%3D&md5=e5563313a022770f740a2675e0960117CAS | 17375939PubMed |

[134]  W. B. Blumenthal, The Chemical Behavior of Zirconium 1958 (N. Y. D. Van Nostrand Co., Inc.: Princeton, NJ).

[135]  H. Lu, J. Zhang, N. Wu, K.-b. Liu, D. Xu, Q. Li, PLoS ONE 2009, 4.

[136]  S. Neethirajan, R. Gordon, L. Wang, Trends Biotechnol. 2009, 27, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVeqtrk%3D&md5=3ec3c1a62005fdc9daf3b59bdb358515CAS | 19577814PubMed |

[137]  D. M. Hart, Aust. J. Bot. 1988, 36, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[138]  F. C. Lanning, B. W. X. Ponnaiya, C. F. Crumpton, Plant Physiol. 1958, 33, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhvVSqug%3D%3D&md5=fd53299d1c9d319c89e7db1fb1b6fdf9CAS | 16655143PubMed |

[139]  T. P. Ding, G. R. Ma, M. X. Shui, D. F. Wan, R. H. Li, Chem. Geol. 2005, 218, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVahsLw%3D&md5=0c61b390ab4b7445463bbea7cb7d2a83CAS |

[140]  B. Mazumder, I. Uddin, S. Khan, V. Ravi, K. Selvraj, P. Poddar, A. Ahmad, J. Mater. Chem. 2007, 17, 3910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCrtrzO&md5=425c075536df1098f4e41a92ed65dd43CAS |

[141]  B. Mazumder, I. Uddin, S. Khan, V. Ravi, K. Selvraj, P. Poddar, A. Ahmad, J. Mater. Chem. 2008, 18, 5998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFeqsr7L&md5=dc0042f4934a3a07d5c7039c270e00a5CAS |