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Introduction

The Gibbs equation is essential for applications of thermody-
namics in chemistry, and is referred to as the ‘fundamental
equation’ in many standard texts on physical chemistry. It

determines how the internal energy, U, of a system depends on
system variables. For a system whose composition does not
change and which undergoes pV work only, these system vari-

ables are the temperature (T), entropy (S), pressure (p), and
volume (V) of a system, and the Gibbs equation is
dU ¼ TdS � pdV . In this manuscript, we show that the Gibbs

equation can be derived directly from microscopic arguments.
In order to establish the framework in which the derivation is
carried out, we first establish how systems relax towards equi-

librium, consider how the properties of a system vary under
quasi-static processes, and discuss the Clausius’ equality for
quasi-static processes. By a ‘quasi-static process’ we mean that
the process is undertaken sufficiently slowly that the system can

be considered to be at equilibrium at any point in time. Many of
the arguments and derivations presented in this paper have also
been presented therein;[1] however, these are repeated in the

present study and discussed in more detail.

Relaxation to Equilibrium

In 2009, we gave a derivation of the relaxation to thermal
equilibrium that clarified when and how relaxation occurs.[2]

We have refined this discussion in subsequent papers, e.g. see

the study therein.[3] In the present proof, we consider a system as
a collection of particles whose positions (q1, q2, y) and
momenta (p1, p2,y) are represented by the phase space vector,

G � ðq1; . . . qN ; p1; . . . ; pN Þ whose trajectory is determined by
time-reversible classical equations of motion. As an example of
a simple process, we consider a system that is initially at equi-

librium at a given temperature T0. The system is placed in
contact with a thermostatting bath, whose temperature is chan-
ged over a certain period after which it is fixed at a final tem-

perature, T1. At this stage, we define the ‘temperature’ of the
heat bath by its equipartition value, which is expressed in terms
of the peculiar kinetic energy of the bath per degree of freedom.
If the system relaxes to equilibrium, then under some conditions

the system will eventually attain the final temperature of the
thermostatting bath and have the properties of an equilibrium
system at the new temperature. In our model, a Nosé–Hoover

thermostat[4] was used to represent the heat reservoir though any
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other mathematical representation of a time reversible thermo-

stat could be used, such as a Gaussian isokinetic thermostat, to
derive essentially identical results. For realistically modelled
systems of interest in which correlations decay quickly

enough (i.e. are T-mixing†) and in contact with a Nosé–
Hoover thermostat with a target temperature T, we proved that
in the long time limit, averages of smooth phase functions
Bðq1; . . . qN ; p1; . . . ; pN Þ � BðGÞ (where qi is the position of

particle i, and pi refers to the momentum of particle i) approach
their equilibrium canonical averages:

lim
t!1

BðStGÞh i ¼ BðGÞh ic ð1Þ

where the ensemble average on the left is over the initial

distribution function (in our example this will be the distribution
function for the system at temperature T0). In this equation, S

tG
is the phase space vector obtained by evolving the system

forward in time for a duration t from the phase vector G at
t ¼ 0. Eqn 1 states that in the long time limit, the properties of
the system relax towards their canonical equilibrium values. The

canonical average hBðGÞic is defined as

hBðGÞic �
R
D
dGBðGÞ exp½�H0ðGÞ=kBT �R
D
dG exp½�H0ðGÞ=kBT �

ð2Þ

where H0 is the total energy (kinetic and interparticle potential)
of the atoms comprising the system. In Eqn 2,D is the ostensible

phase space domain (i.e. all the possible phase space configura-
tions that the system can adopt) with particle coordinates
ranging over some physical volume V and momenta spanning

over an infinite range from �N to þN, kB is Boltzmann’s
constant, and T is the temperature of the equilibrium system.We
can model a system undergoing a change in temperature using

the Nosé–Hoover equations of motion[4] for the system:

_qi ¼
pi
m

_pi ¼ FiðqÞ � SiðaðGÞpi þ gthÞ

_a ¼

PN
i¼1

Sip
2
i =m

3ðNth � 1ÞkBTðtÞ
� 1

0BB@
1CCA 1

t2a

ð3Þ

In Eqn 3, ta is the Nosé–Hoover time constant, Nth is the
actual number of thermostatted particles, and m is the particle

mass. Fi ¼ �@FðqÞ=@qi is the total force exerted on particle i
by all the other particles, Si¼ 0, 1 is a switch controlling which
particles are subject to the thermostat, and the fluctuating force

gth is chosen to fix the total momentum of the thermostatted
particles at zero. Additionally, in Eqn 3,TðtÞis the possibly time-
dependent, target temperature appearing in the equation of

motion for the Nosé–Hoover thermostat. As the system relaxes
towards a time-independent equilibrium state, we know that
lim
t!1

_aðtÞh i ¼ _aðtÞh ic ¼ 0 and therefore using Eqn 3, the equilib-

rium thermodynamic temperature is indeed related, as we said
above, to its equipartition value.

This set up, Eqn 3, allows us to model the thought experi-

ment we discussed above using a parametric change in the
Nosé–Hoover target temperature of the thermostat. In this
thought experiment, the thermostat is always in thermal contact

with the system of interest, whose response we wish to under-
stand. We note that in theory, the thermostatted particles could
bemade arbitrarily near or far from a system of interest (the two
may be separated by arbitrarily thick, realistically modelled

walls whose particles, similarly to the particles in the system of
interest itself, have Si ¼ 0 in Eqn 3). Thus, the results obtained
below could be generalized and would be independent of the

precise mathematical details of our thermostat.
Our equilibrium relaxation theorem for systems in contact

with a heat reservoir also shows that for T-mixing systems, the

analytic equilibrium distribution function is in fact unique, and
any deviation from this distribution function (even in the
momenta) will cause dissipation, which tends to be strictly
positive,[7] and the deviated distribution cannot be stationary

in time.[2] This means that the same result will be obtained even
if the initial state of the system is not just at a different
temperature, but could be in a non-equilibrium state. The

relaxation theorems do not imply that the full N-particle distri-
bution actually relaxes to the canonical distribution (Eqn 2); in
contrast, ensemble averages of physical phase variables (e.g.

energy, pressure, specific heat etc.) relax. These averages are
exact functionals of the low-order 1-, 2-, 3-particle distribution
functions obtained by integrating over N �1, N � 2, N � 3, y

particle coordinates and momenta, respectively (note that dif-
ferent low-order distributions are obtained depending on which
variables are integrated out). These low-order distribution
functions do relax to their canonical forms in the long time limit

as they can be written as ensemble averages of phase vari-
ables.[8] Therefore, using the fact that the analytic equilibrium
distribution function is unique, the ensemble averages of the

low-order distribution functions must relax to their equilibrium
values.

The equilibrium relaxation theorems also show that if the

parametric change in the Nosé–Hoover target temperature is
halted at a certain time t0, so that the target temperature is Tðt0Þ
and the system is T-mixing, then the properties of the system,
including the low-order equilibrium distribution functions, will

relax towards their values with the equilibrium thermodynamic
temperature being Tðt0Þ.

Clausius’ Equality for Quasi-Static Processes and the
Gibbs Equality

In 2011, we gave a mechanical proof[9] of Clausius’ inequality
for heat transferred to a heat reservoir in a cyclic process,

p

H
dQthh i=T � 0, where dQth is the heat absorbed by the ther-

mostatting reservoir from the system of interest. The Clausius
inequality only applies if a system, subject to a periodic proto-
col, settles down to a periodic ensemble-averaged response –
hence the subscript ‘p’ in front of the integral. This proof used

generalizations[10] of the Crooks fluctuation theorem[11] and the
Jarzynski equality.[12] It stands in contradistinction to Clausius’
‘proof’, which is based on the axiom ‘that heat cannot by itself

flow from a colder to a warmer body’ (see p. 277 in Clausius
(1867)[13]). Furthermore, our approach unambiguously defines

†For T-mixing systems, time integrals of transient time-correlation functions of zero-mean physical phase functions converge to finite values in the long time

limit.[5] Thus, lim
t!1

R t

0
BðSsGÞAð0Þh ids ! const; using the dissipation theorem[6] BðStGÞh i ¼ BðGÞh i þ

R t

0
BðSsGÞOð0Þh i ds implies lim

t!1
BðStGÞh i ! const.
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the temperature appearing in the inequality, as discussed below.

Our proof is based on the laws of classical mechanics and the
axiom of causality.[7]

For quasi-static (qs) processes (also referred to as reversible

process), the forward and reverse integrals qs

R b

a
d=Qthh i=T have

equal magnitude and opposite sign. Thus, the Clausius inequal-
ity reduces to Clausius’ equality: qs

H
d=Qthi=T ¼ 0h . The inte-

gral qs

R b

a
d=Qsoih i=T for quasi-static processes (and only for

quasi-static processes!), where soi refers to system of interest,
was defined by Clausius as the change in the equilibrium
entropy, DSeq ¼ Sb � Sa�qs

R b

a
d=Qsoih i=T , and therefore Clau-

sius’ entropy is a state function. This means that DSeq will be
independent of the actual pathway between equilibrium states
a and b.

Note that the strikethrough on the differential for the heat
denotes the fact that the heat is not a state function, and many
textbooks state that d=Q is an ‘imperfect’ differential. Addition-
ally, textbooks often state that the reciprocal of the absolute

temperature is the ‘integrating factor for the heat, thereby
turning d=Q=T into a perfect differential i.e. dS’, meaning that
its integral gives the change in a state function, namely the

equilibrium calorimetric entropy, Seq. We also follow the
conventional notation used in classical thermodynamics where-
in dX denotes a quasi-static, so-called virtual change, in the

arbitrary variable X. We could replace each dX by dX/dt;
however, conventionally this has not been done.

Close to equilibrium, an intensive quantity such as the

hydrostatic pressure, which is a purely mechanical property,[14]

behaves as follows:

lim
_e!0

p ðTkin; r; _eÞ ¼ peqðT ¼ Tkin; r; _e ¼ 0Þ þ O ð_e2Þ ð4Þ

where Tkin is the kinetic temperature of the non-equilibrium

system (or in fact, any other phase function whose equilibrium
average is the equilibrium thermodynamic temperature), T is the
equilibrium thermodynamic temperature appearing in the equi-

librium canonical distribution function (Eqn 2).[2] It is the
equilibrium thermodynamic temperature the system will relax
towards (as in Eqns 1 and 2) if the dilation rate is set instan-

taneously to zero _e ¼ 0, and we simply allow the relaxation
processes to run their courses. In Eqn 4, peqðN ;V ; TÞ is the

equilibrium pressure. In the so-called, quasi-static limit where
rates of executing non-equilibrium processes go to zero, we can
calculate changes using the equilibrium values for thermody-

namic variables. This is possible because integration times for

the process scale like the reciprocals of the rates (e.g. _e�1), while
the errors incurred by replacing the actual non-equilibrium

values with their equilibrium counterparts (Eqn 4) scale like
the square of the rates. This means that the non-equilibrium

contributions to the time-integrated changes vanish asOð_eÞ !
_e!0

0

at sufficiently slow rates, and the quasi-static changes can be

expressed in terms of the properties of the equilibrium systems.
One can now combine the conservation of energy for our

system of interest with the definition of the change in equilibri-

um entropy to obtain the Gibbs equation for quasi-static changes
in the internal energy,U. The equilibrium entropy Seq;soi and the
volume V of the system of interest are related to the temperature

T, and the equilibrium pressure, peq, by the following equation:

dUeq;soi ¼ d=Qsoi � peqdV ¼ TdSeq;soi � peqdV ð5Þ

where we have assumed the system is macroscopic and fluctua-

tions are negligible. This is the key equation of classical
equilibrium thermodynamics and it was first written down for
single-component systems by Clausius and generalized to

mixtures by Gibbs. Currently, even the single-component ver-
sion is known as the Gibbs equality.[15] Because we are able to
derive the Clausius equality from the mechanical equations of
motion and use this to derive the Gibbs equality as shown above,

the result gives a derivation of the Gibbs equality based on
mechanical dynamics.

There is an alternative derivation of the Gibbs equation,

Eqn 5, which obviates the need to introduce the generalized
Crooks and Jarzynski relations. The Helmholtz free energy (Ac)
of an equilibrium, canonical system in the thermodynamic limit

(N ! 1) is:

Ac � �kBT ln½
Z
D

dG exp½�bH0ðGÞ� ð6Þ

In Eqn 6, b � 1=ðkBTÞ, with the temperature being the usual
thermodynamic temperature of the equilibrium system. The
equilibriumHelmholtz free energy is the logarithmof the partition
function (the normalisation factor appearing in the equilibrium

canonical distribution (Eqn 2)). The Helmholtz free energy is
obviously a property of the equilibrium system and is a function
of N,T,V.

If we subject our system to a quasi-static (equilibrium) cyclic
change in temperature, from the definition of the Helmholtz free
energy of the equilibrium canonical system, we see that for

quasi-static changes,z

lim
_T!0

@ðAc=TÞ
@t

¼ @bH0

@t

� �
c

ð7Þ

In Eqn 7, h. . .ic denotes a canonical average (Eqn 2). When
deriving Eqn 7, we are assuming that the Helmholtz free energy
is given by the canonical expression Eqn 6 at all times. We are
thus computing the derivatives in the infinitely slow limit as

shown in Eqn 7.
We can therefore compute the cyclic integral of the quasi-

static rate of change in the Helmholtz free energy due to

temperature changes in the thermodynamic limit:

qs

I
dðAc=TÞ ¼ qs

I
dðUc=TÞ

¼ qs

I
Ucdð1=TÞ þqs

I
dQsoi=T

¼ 0 ð8Þ

The first line is obtained from Eqn 7, noting that H0h ic ¼ Uc.

In going from the first to the second line in Eqn 8, we use the
chain rule and the fact that for this transformation, by construc-
tion, the change in the internal energy is caused solely by

exchange of heat.
The cyclic integral of the change in the Helmholtz free

energy divided by the temperature of our quasi-static (equilib-

rium) cycle is zero because, by definition, in a cyclic, quasi-
static process, the system returns to its initial equilibrium state

zNote: There is a typographic error in our derivation of Eqns 7 and 8 in our recent book[1] (eqns 5.57 and 5.58).
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after one cycle. Similarly, both the internal energy and the

temperature (our definition) are state functions; hence,

qs

H
Ucdð1=TÞ ¼ 0.
Substituting the latter expression into Eqn 8 shows that

qs

I
dQsoi=T ¼ 0 ð9Þ

This result again shows that for quasi-static changes, the
equilibrium entropy is a state function. We can then invoke
energy conservation and the definition of the equilibrium

entropy changes to derive the Gibbs equality (Eqn 5), as we
did before.

The property Twas not explicitly defined for non-equilibrium

processes in the original statements of Clausius’ inequality.
In our work,[7,9] we showed that if T is interpreted as the
temperature the non-equilibrium system would relax to if all

the driving forces were removed, then the inequality can be
proven. However, onemight questionwhether there ismore than
one temperature that would satisfy the inequality in general.
This is not the case – the integrating factor for the heat (apart

from a simple scaling) is unique. It cannot be replaced by any
other monotonic function of the reciprocal temperature such as
1=T 3. This is because it comes directly from the algebraic form

for the canonical equilibrium distribution function (Eqn 2) and
then the associated form for the corresponding Helmholtz free
energy (Eqn 6). For T-mixing systems in contact with a heat

reservoir, the analytic equilibrium distribution is unique as well
as the ‘integrating factor’ for the heat. Thus, the integrating
factor for the heat is in fact the instantaneous temperature of the

canonical distribution of states through which the system
evolves during a quasi-static process.

There is another important consequence of this new, much
simpler derivation of the Gibbs equation in Eqn 5. This simpler

derivation confirms observations by Tatiana Ehrenfest (see
the preface (p. 54) to ‘The Conceptual Foundations of the
Statistical Approach to Statistical Mechanics’ by Paul and

Tatiana Ehrenfest[16]) whereby the so-called Gibbs equality
(Eqn 5) can be derived without any reference to irreversibility.
It is a statement that only concerns equilibrium processes or

non-equilibrium processes considered in the quasi-static limit.
The Gibbs equality (Eqn 5) ‘is completely independent of the
direction of time’.[16]

Clausius’ Inequality and Calorimetric Entropy

We note that our mechanical proof of Clausius’ inequality[9] is
valid for periodic processes that are irreversible. The tempera-
ture that appears in our inequality at any point in a cycle is the

Nosé–Hoover target temperature appearing in the equations of
motion (Eqn 3) at that same point in the cycle. At any point in the
cycle, that temperature is the equilibrium temperature appearing

in the canonical distribution that characterises the canonical
averages of phase functions that the system will relax towards if
the execution of the cycle is halted and the relaxation towards

equilibrium is allowed as in Eqns 1 and 2.
The change in equilibrium entropy defined byClausius refers

to quasi-static processes and leads to the entropy being a state
function.We now introduce a new entropy that we refer to as the

change in the calorimetric entropy DScalðT ;VÞ of the system of
interest where we do not require the change to be quasi-static:

DScal;soi �
Z b

a

d=Qsoih i=T ð10Þ

The change in the calorimetric entropy will depend on the

path from state a to state b and therefore it is not a state function.
However, in the quasi-static limit, the values for the change
in calorimetric and equilibrium entropies become the same.

Using this definition, we can show that changes in the calori-
metric entropy of the system of interest and of the thermostat
computed for reversible or even irreversible processes are
equal and opposite, with the sumof their changes being precisely

zero
R b

a
dQsoi=T þ

R b

a
dQth=T ¼

R b

a
ðdQsoi � dQsoiÞ=T ¼ 0.Our

thermodynamic temperatures for the reservoir and system of
interest are obviously instantaneously equal to one another

because by construction, the reservoir and the system of interest
are always in thermal contact with each other. This shows that
the change in the calorimetric entropy of the universe is zero

for any process, which is inconsistent with Clausius’ famous
statement: ‘the entropy of the Universe tends to a maxi-
mum’.[13] Clausius’ statement is problematic because the uni-
verse is not always in quasi-static equilibrium; furthermore, for

non-equilibrium systems, Clausius’ entropy is not defined.
Often, the requirement for systems to be at equilibrium at the
beginning and end of a process for Clausius’ statement to

apply is overlooked. The temperature as Clausius defined
it, TClausius � @Ueq=@Seq

��
V
, is obviously undefined for non-

equilibrium systems. At equilibrium, there are infinitely many

phase functions whose ensemble average equals the equili-
brium thermodynamic temperature (e.g. kBT ¼ hp2i =3mi ¼
hp2x;i=mi ¼ hjrqFðqÞj2i=hr2

qFðqÞi (where FðqÞ is the total

interatomic potential energy of all the atoms in our system[17]).
When we deviate from equilibrium, these different expressions
each generally have different ensemble-averaged values.
Reading through Clausius’ papers, it appears that he thought

that the temperature of an ideal gas is always well defined.
However, this is in fact not the case as we deviate from
equilibrium. The logical inconsistencies inherent in Clausius’

strict inequality for a system of interest have been known for
over 100 years.[18]

As we deviate from equilibrium, we cannot use the known

equilibrium temperature of a second ideal gas reservoir system
to determine the temperature of a non-equilibrium steady-state
because there is no zeroth law for the equality of the tempera-
ture of a non-equilibrium system in thermal contact with an

equilibrium system. As we have shown using the fluctuation
theorem and the second law inequality, if there is a system of
interest in equilibrium with an ideal gas, then the system of

interest is driven away from equilibrium by application of a
field – heat will simply flow from the non-equilibrium system
to the ideal gas (formerly) equilibrium system on average.[19]

This flow, close to equilibrium, would be interpreted as
occurring in response to a temperature gradient. Further
from equilibrium, the temperature under Clausius’ definition

remains undefined.

Relationship between Gibbs Entropy and the
Calorimetric Entropy

In this section, we show that our calorimetric entropy is

completely consistent with Gibbs’s observation – in an auton-
omous Hamiltonian system, the fine-grained Gibbs entropy,
SGðtÞ � �kB

R
dG f ðG; tÞ lnð f ðG; tÞÞ, is a constant of the

motion.[20] There have been many discussions of Gibbs

(Boltzmann) entropy and its relationship to thermodynamics;
for examples see the references therein.[21–27] Here, we use a
different approach.

1416 D. J. Evans, D. J. Searles, and S. R. Williams



We now consider the instantaneous rate of change of the

Gibbs entropy for a possibly irreversible process:

_SGðtÞ ¼ �kB

Z
dG½1þ lnð f ðG; tÞÞ� @f ðG; tÞ

@t

¼ �kB

Z
dG f _G �

@½1þ lnðf Þ�
@G

¼ �kB

Z
dG _G �

@f

@G
¼ kB

Z
dG f

@

@G
�G

¼ �3ðNth � 1ÞkBhaðtÞi

¼ � _QthðtÞ
TðtÞ ¼

_QsoiðtÞ
TðtÞ � _Scal;soiðtÞ; 8t ð11Þ

In Eqn 11, _QsoiðtÞ denotes the rate of heat gain or loss for the
system of interest and _Scal;soi denotes the possibly irreversible

change in the calorimetric entropy of the system of interest. This
extension of the notion of calorimetric entropy to irreversible
processes is made possible by our extension of the definition of

temperature to such systems. Eqn 11 expresses the rate of
change in Gibbs entropy in terms of heat transfer and equilibri-
um temperature that could bemeasured calorimetrically, at least
for some experimental setups, rather than phase space properties

such as the distribution function and phase space contraction
rate. The relationship between the phase space contraction and
the heat transfer used to obtain the final equality is valid for

field-driven thermostatted systems and for the systems under-
going temperature changes discussed above, see reference
therein.[9] Under other conditions, such as field-driven isoener-

getic systems, the relationship can differ but the change in Gibbs
entropy may still be expressed in terms of measureable
properties.

We note that in order to determine the sign of the Clausius

inequality, one has to employ a fluctuation relation such as the
Crooks fluctuation relation,[11] as we have done previously.[9]

In going from line 2 to line 3 of Eqn 11, we have assumed that

Nth particles are subject to a Nosé–Hoover thermostat in 3
Cartesian dimensions, as in our equations of motion (Eqn 3).
However, one could thermostat just one Cartesian dimension. In

this case, the factor 3 in line 3would be changed to 1. Thismakes
no difference to the final result. The result is also completely
independent of the Nosé–Hoover time constant ta appearing in

the equations of motion (Eqn 3) and the actual number of
thermostatted particles, Nth. The factor 3ðNth � 1ÞkBaðtÞ is thus
completely nominal. The only quantities that are independent of
how the thermostatting is carried out are the rate of heat gained

by the system of interest _Qsoi and the equilibrium thermody-
namic temperature the system will relax to TðtÞ if at time t, the
protocol execution is halted and the system is allowed to relax

towards equilibrium. This temperature is, in this case, always the
target temperature of the Nosé–Hoover thermostat at time
t, TðtÞ (Eqn 3). This target temperature is completely indepen-

dent of the Nosé–Hoover time constant, the actual number of
thermostatted particles, or indeed whether the thermostat oper-
ates on all Cartesian momentum components or just some of
them. We note that the non-equilibrium distribution of states at

time t, f ðG; tÞ, is highly dependent on the Nosé–Hoover time
constant and the precise number of particles that are directly
thermostatted. It is only the underlying equilibrium temperature

that is independent of the thermostatting details.
Eqn 11 gives a generalized expression for the rate of change

of Gibbs entropy. It is valid for reversible and irreversible

processes and shows that the change in Gibbs entropy, defined

in terms of the phase space distribution function, is in fact related
to physical properties i.e. the heat transfer and the underlying
equilibrium temperature of the possibly non-equilibrium

system.
The reversible and irreversible Gibbs and calorimetric entro-

pies are instantaneously equal. The key to understanding Eqn 11
is our definition of the temperature – the temperature of the

underlying equilibrium state that any non-equilibrium system
will relax to if itwas so allowed.EveryT-mixingnon-equilibrium
system is in a sense ‘attracted’ to a unique equilibrium state. The

equilibrium temperature of this attracting state is the temperature
that appears in Eqn 11.

If the process is not quasi-static, the change in the entropy

that would be computed using Eqn 11 is not path independent.
This means that if the process is irreversible, the calorimetric
entropy is not a state function and because Clausius’ entropy
must be a state function, the definition of the temperature,

TClausius � @U=@S

���
V
, is as we noted above, not well defined.

We note that for a quasi-static process, transforming a system

from equilibrium state 1 to equilibrium state 2, DScal ¼ DSeq,
where DSeq is the difference of equilibrium entropies of the
equilibrium states. However, if the transformation is carried out

irreversibly, DScal 6¼ DSeq. This reflects the fact that only the
equilibrium entropy is a state function. It also reflects the fact
that the change in the Gibbs entropy calculated using Eqn 11
incorporates the details of the underlying distribution that will

never reach the equilibrium distribution of state 2 in finite time,
although the physical properties of the systemwill relax towards
their equilibrium values to within any desired accuracy.

For a non-equilibrium system, only the Gibbs and calorimet-
ric entropies are defined. Eqn 11 provides a very simple example
of how these non-equilibrium entropies are singular by consid-

ering a system undergoing constant energy dynamics (possibly
using an ‘ergostat’, which has a similar function to a thermostat
but fixes the energy rather than the temperature). If we start with

amicrocanonical equilibrium distribution in the thermodynamic
limit and such a system evolves using Hamiltonian dynamics
(Newtonian), then there is no need to apply an ergostat, and
Eqn 11 shows that the Gibbs entropy does not change. However,

if we apply a dissipative field to the system, an ergostat will be
required to keep the energy fixed. Eqn 11 gives the rate of
change of the Gibbs entropy of the system of interest, even in the

presence of the dissipative field. After sufficient time (several
periods equal to the time required for relaxation of stress in the
system, or ‘Maxwell times’), we assume the system relaxes into

a ‘pseudo non-equilibrium steady state’[6]. By this, wemean that
the system has relaxed to a state whose properties do not change
with time within some arbitrarily small tolerance). The non-
equilibrium steady state can be approached arbitrarily closely by

extending the time over which the field is applied.
In the pseudo-steady state, the ensemble-averaged value of

the ergostat multiplier (a) is approximately constant, i.e. inde-

pendent of time. However, Eqn 11 shows that this means that the
Gibbs entropy of the system diverges towards negative infinity
at a constant rate. Now considerwhat happens if, after some long

but finite time t, we set the dissipative field back to zero and let
the T-mixing system relax at constant energy towards micro-
canonical equilibrium.[28] In this relaxation process, the Gibbs

entropy of the system does not change because it is now an
autonomous Hamiltonian system following Newtonian dynam-
ics.[20,29] No thermostat is required to keep the energy constant,
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and therefore a ¼ 0. After a Maxwell time (or several Maxwell

times), the averages of all physical phase functions converge
towards the same microcanonical values they had at time zero.
However, the Gibbs entropy of the final state determined from

Eqn 11 can be made arbitrarily more negative than the initial
entropy by simply extending the duration t of the non-equilibri-
um pseudo-steady state to arbitrarily large values! Obviously, if
we attempt to find the temperature of this second state by

applying Clausius’ definition to this irreversible process,

TClausius � @U=@S

���
V
, we can obtain an infinite range of values

depending on how long we stayed in the non-equilibrium
pseudo-steady state. Although the physical properties will
converge towards their equilibrium values, the path integral of

the rate of change in Gibbs entropy computed along non-
equilibrium paths using Eqn 11 can be made arbitrarily different
from its equilibrium value.

We note that if after an irreversible process of arbitrary

duration, the system is allowed to relax towards equilibr-
ium and the equilibrium entropy differences can be computed
arbitrarily accurately. For example, the equilibrium

entropy difference DSeq ¼ SeqðN ;V2; TÞ � SeqðN ;V1; TÞ can
be computed as an equilibrated path integral using the
Maxwell relation @Seq

�
@V

��
T
¼ @peq

�
@T

��
V

as DSeq ¼R V2

V1
dV 0@peqðN ;V 0; TÞ=@T jV 0 . (Note: peqðN ;V ; TÞ is obtained

to arbitrary accuracy from the non-equilibrium pressure by
using Eqn 4.) This does not contradict our statement above
that the entropy is not a state function for irreversible

processes. This is because the Maxwell relations, upon which
this approach is based (via equality of two expressions for
@2Ac

�
@T@V ), are ultimately based on the Gibbs equation

(Eqn 5) and Eqn 9, both of which are valid for equilibrium
states only. Both of these equations, as we have already
noted, have nothing to do with irreversibility.

The Gibbs entropy, which is instantaneously equal to the
calorimetric entropy, is a function of the unphysical and generally
unmeasurable N-particle phase space probability distribution

function. A true equilibrium distribution can never be reached
in finite times.[2] Therefore, by introducing the T-mixing condi-
tion, we concentrate on the relaxation of averages of physical
phase functions, thereby ignoring the intricacies of the full

N-particle phase space distribution functions.

Conclusion

We can summarise the relationships between the change in

equilibrium entropy (DSeq¼qs

R b

a
d=Qsoih i=T ), change in calori-

metric entropy (DScal ¼
R b

a
d=Qsoih i=T ), Gibbs entropy ðSGðtÞ �

�kB
R
dG f ðG; tÞ ln½ f ðG; tÞ�Þ and equilibrium Gibbs entropy

ðSG;eq � �kB
R
dG feqðGÞ ln½feqðGÞ�Þ as follows:

(1) Quasi-static processes: DSeq ¼ DScal ¼ DSG ¼ DSG;eq
(2) Quasi-static cyclic processes:

H
_Seq ¼

H
_Scal ¼

H
_SG ¼H

_SG;eq ¼ 0
(3) Irreversible processes that start and end at equilibrium:DScal ¼

DSG ¼
R b

a
hd=Qsoii=T 6¼ DSeq ¼ DSG;eq ¼ qs

R b

a
hd=Qsoii=T

(4) Irreversible processes that start or end out of equilibrium
DScal ¼ DSG ¼

R b

a
d=Qsoih i=T and DSeq and DSG;eq are

undefined
(5) For reversible or irreversible processes, DSG;universe ¼

DScal;universe ¼ 0

We note that for irreversible processes that start and end in

equilibrium states, the change in Gibbs free energy is not equal

to the difference in Gibbs free energies of the equilibrium state

that the system starts in and relaxes towards i.e. DSG 6¼ DSG;eq.
Although this seems counterintuitive, the inequality occurs
because though the state functions of the system will have

relaxed to their equilibrium values, the distribution function
continues to evolve and will never reach the equilibrium
distribution. The Gibbs entropy is a function of the distribution
function itself, and therefore the Gibbs entropy of the evolved

state will never be equal to the Gibbs entropy of the equilibri-
um state that is being approached. The equilibrium Gibbs
entropy, SG;eq � �kB

R
dG feqðGÞ ln½feqðGÞ�, is a state function.

However, in general, the Gibbs entropy, SGðtÞ �
�kB

R
dG f ðG; tÞ lnðf ðG; tÞÞ, is not an average of a phase func-

tion and is not a state function. In summary, therefore, Seq and

SG;eq are state functions, whereas, in general, Scal and SG are not.
Because the thermostat in Eqn 3, with Nosé–Hoover target

temperature TðtÞ, is not applied directly to the system of interest,
our treatment may appear to be highly non-local. We thus

consider the heat transferred to the system of interest and the
temperature that is controlled by the thermostat, which is
external to the system of interest. However, the zeroth ‘Law’

of thermodynamics (see our recent mechanical proof[19]) shows
that the equilibrium temperature to which the entire system will
relax, if it is so allowed, is in fact spatially uniform across the

entire thermal system (the system of interest, the walls (if any)
and the thermostatting particles). This makes the temperature of
the underlying or attracting equilibrium state uniform across the

entire thermal system. This in turn means that our results can be
expressed entirely in terms of variables that are local to the
system of interest because our newly defined temperature is in
fact a global property.

Finally, we point out that there have recently been many
related developments regarding the foundations of statistical
thermodynamics. A succinct summary is available in a recently

published book therein.[1]
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