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Polarity inversion is the hallmark of N-heterocyclic carbene (NHC) organocatalysis, with the generation and reaction of
acyl anion equivalents known for more than 70 years. In contrast, polarity inversion through 1,4-addition of NHCs to
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steadily over the subsequent years, enabling novel coupling reactions, enantioselective cycloisomerizations, polymeriza-
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Introduction

Although catalysis via polarity-inverted intermediates can be

achieved with various catalysts and substrates,[1] reactions of
acyl anions formed using N-heterocyclic carbenes (NHCs) are
some of the most common.[2] Such chemistry was discovered
more than 70 years ago by Ukai,[3] with mechanistic clarity

introduced by Breslow in 1958.[4] Specifically, a nucleophilic
carbene 1 adds to an aldehyde and the resultant alkoxide tau-
tomerizes to give the acyl anion equivalent 2, colloquially

referred to as the Breslow intermediate. Subsequent coupling to

an electrophile is followed by elimination of the NHC to com-
plete the catalytic cycle (Scheme 1a). Before the turn of this

century, these events were largely limited to the benzoin con-
densation and Stetter reaction. More recently, Breslow inter-
mediates derived from more sophisticated aldehydes have been
accessed, thereby providing access to a range of secondary

reactive intermediates, and fuelling the rapid growth in NHC-
organocatalysis.[2c]

In little more than the last decade, a parallel field of NHC-

organocatalysis has emerged in which the polarity of conjugate
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acceptors is inverted by 1,4-addition of the NHC. As with the
formation of the Breslow intermediate, polarity inversion occurs

by addition of the NHC and tautomerization of the resultant
enolate, resulting in reactive intermediate 3. Enediamine 3 (also
referred to as the b-azolium ylide or deoxy-Breslow

intermediate[5]) couples to an electrophile and, after elimination
of the NHC, gives a b-alkylated product (Scheme 1b). In the
present review, we will examine the development of this
chemistry in a comprehensive fashion. In the section Phosphine

Catalysis, related catalysis achieved with phosphines is dis-
cussed. In the section Stoichiometric Access to the Enediamine,
stoichiometric routes to the enediamine are discussed, with the

section NHC-Catalysis Involving Single C–C Bond Formation

detailing catalytic reactions involving single C–C bond-forming
events. Finally, multiple C–C bond formation is discussed in the

section NHC-Catalysis Involving Multiple C–C Bond Forma-

tion, while comments on catalyst selection and concluding
remarks are made in the sections Miscellaneous Reactions of

the Enediamine and Catalyst Selection.

Phosphine Catalysis

In 1962, Takashina and Price reported the triphenyl phosphine-
catalyzed hexamerization of acrylonitrile (Scheme 2).[6] In
contrast to phosphine-catalyzed reactions of theb-phosphonium
enolate (i.e. 4) – a species that would attract significant attention
over the following years[6b,7] – this transformation was achieved
in the presence of ethanol as a cosolvent. It was postulated that

the alcoholic additive allows tautomerization of enolate 4 to give
the b-phosphonium ylide 5 that then couples with a second
acrylonitrile to give 6. Four subsequent Michael additions and

elimination of the catalyst then gives 7. Although the utility of
such products is not clear, this pioneering report demonstrates
the potential of catalysis exploiting polarity inversion of con-

jugate acceptors.
Related phosphine-catalyzed dimerizations of electron-poor

olefins have been examined sporadically in the years following

this report,[8] often in the context of non-electrochemical routes
to adiponitrile. Most recently, Han and coworkers reported the
dimerization of vinylphosphonate 8 to give 9 in 48% yield in the

presence of a catalytic trialkyl phosphine (Scheme 3).[8c]

Although these reports demonstrate the viability of
phosphine-mediated polarity inversion, the development of
reactions beyond commodity chemical dimerization and oligo-

merization is yet to be demonstrated. The variability and
abundance of phosphine catalysts in the literature suggest that
this subfield could, in the future, expand into a profitable area of

organocatalysis.

Stoichiometric Access to the Enediamine

Enders and coworkers reported the stoichiometric preparation of
an enediamine in 1995.[9] Like the b-phosphonium ylide
introduced in the previous section, the formation of enediamine

10 is thought to occur by 1,4-addition of NHC 11 to an electron-
poor olefin and subsequent tautomerization (Scheme 4). Further
reactions of the enediamine were not explored; however, this

report introduced NHCs and substrates that could subsequently
be applied in catalytic reactions.

Stoichiometric formation of related enediamines was

reported by Chen and coworkers in 2012[10] in their studies of
NHC-mediated polymerization reactions. Specifically, they
found that the combination of IMes 12 and methyl methacrylate

(13) afforded enediamine 14, which was characterized by X-ray
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crystallography (Scheme 5). Whether enediamine formation
(i.e. 14), dimerization, or polymerization occurs with methyl-

methacrylate (13) was found to be sensitive to the nature of the
azolium.

More recently, Biju and coworkers reported the stoichiomet-

ric formation of enediamine 15 when chalcone 16 is exposed to
various imidazolium-derived NHCs (i.e. 12) in the presence of
air (Scheme 6).[5e] In this reaction, 1,4-addition provides enolate

17, which is oxidized to the 1,2-dicarbonyl 18, which is then
deprotonated to give enediamine 15.

NHC-Catalysis Involving Single C–C Bond Formation

The first catalytic reaction implicating the enediamine was
reported in 2006 by Fu and coworkers. In studies examining a

nickel-catalyzed Mizoroki-Heck reaction, it was discovered that
the cyclization of19 to give20 (Scheme7a) could be catalyzed by
NHC ligand 21 in the absence of a transition metal.[11] The

observed reaction was rationalized as occurring by 1,4-addition
of the Lewis base catalyst to give enolate 22, which then under-
goes tautomerization to enediamine 23. Subsequent displacement

of the tethered bromide provides the cyclized material, with
elimination of the catalyst giving the observed product 20. What
is striking in this reaction is that enolate 22 does not undergo
direct cyclization to give cyclohexene 24 (Ph¼OEt). In contrast,

with phosphines – Lewis base catalysts also capable of polarity
inversion (see above) – cyclization via the enolate is observed to
provide the six-membered product 24 (Scheme 7b).[12]

Computational investigations by Wang and coworkers
examined the divergent reactivity of NHC and phosphine
catalysts, and concluded that formation of enediamine 23 was

thermodynamically favoured over enolate 22, something that

was not the case for the analogous b-phosphonium ylide.[13]

This intriguing report from Fu introduced a new reactive
intermediate to the field and demonstrated that NHC-

organocatalysis by 1,4-addition is not limited to enolate reac-
tions.[14] Despite this advance, it was some 5 years before the
next report of catalysis via the enediamine emerged. In 2011,
Matsuoka and coworkers reported the tail-to-tail dimerization

of acrylates effected by triazolium-derived NHC 11

(Scheme 8a).[15] The proposed mechanism for this reaction
involves addition of the NHC to provide enolate 25, which then

tautomerizes to give the enediamine 26. Nucleophilic addition
to another equivalent of the starting material then installs the
newC–C bond in 27, with elimination of the catalyst by an E1cB

mechanism providing the observed product 28. Independent
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studies reported concurrently by Glorius and coworkers intro-
duced a similar transformation.[16] In their work, it was also

possible to achieve the cross-coupling of acrylates with vinyl-
phosphonates in the presence of triazolium-derived NHC 11 to
give, for example, 29 (Scheme 8b). Presumably the dual

activation within the vinyl phosphonate allows chemoselective
addition of the NHC to this partner.

Subsequently, Matsuoka and coworkers expanded on these

initial discoveries to include a,b-unsaturated nitrile 30 as a
precursor to enediamine 31. This transformation proved sensi-
tive to H-bond donor additives, with favourable results obtained
in the presence of propan-2-ol and 2-naphthol (Scheme 9).[17]

The first enantioselective reaction to exploit the enediamine
intermediate was introduced by Nakano and Lupton in 2016. In
this work, the cycloisomerization of bis-Michael acceptor 32

was achieved to allow access to enantioenriched aryl propiolate
33 (Scheme 10).[18] Specifically, the reaction starts with polarity
inversion of the more electrophilic b-unsubstituted vinyl ketone
using the nucleophilic p-methoxyphenyl NHC 34 to give ene-
diamine 35. Subsequent addition into the second Michael
acceptor gives rise to enolate 36. Diastereoselective protonation,
to establish the only stereogenic centre retained in the product, is

then followed by elimination of the catalyst and keto-enol
tautomerism to give 33. The reaction occurred with moderate
levels of enantioselectivity, which could be augmented using

hexafluoroisopropanol (HFIP) as an additive. This is likely due
to the HFIP serving as a bulky acid for the diastereoselective
protonation.

Although enantioselectivity was possible with the previous
design, an alternative cycloisomerization was developed by the
same group to access more highly enantioenriched materials

(Scheme 11).[19] In this transformation, the cyclization sets a

stereocentre that is retained in the product. As a consequence,
this design was more robust, allowing a wide array of cyclo-
pentanes (i.e. 37) to be prepared from bis-Michael acceptors (i.e.

38) with high levels of enantioselectivity.
Recently, polarity inversion of aryl acrylamide 40 has enabled

the preparation of 2-quinolones 41 (Scheme 12).[20] In this report,

Tobisu and coworkers exploit bespoke high-nucleophilicity
NHCs (i.e. 42) to give enediamine 43, which then undergoes a
concerted aromatic substitution reaction (CSNAr, supported by
computational studies) to give 44 and ultimately the quinolone

41. This study is a rare example of the enediamine adding to an
electrophile that is not a Michael acceptor.

In addition to small-molecule synthesis, the enediamine has

been exploited in polymerization studies.[21] For example, Chen
and coworkers reported linear chain propagation of dimetha-
crylate 45 by tail-to-tail dimerization catalyzed by 11. This

reaction furnished polyesters of high atomic weight and narrow
dispersity (Scheme 13).

NHC-Catalysis Involving Multiple C–C Bond Formation

Formation of the enediamine proceeds via initial formation of an
enolate – the key intermediate for the Morita–Baylis–Hillman

and Rauhut–Currier reactions.[7] In addition, mechanistic
investigations have revealed how the enediamine can reform
following a bond-forming reaction (see below). Thus, reactions
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can be designed that exploit multiple C–C bond-forming events
involving either intermediate.

In 2015, Berkessel and coworkers reported studies on the
dimerization of dimethyl acrylamide 46 with the Enders triphe-
nyltriazolium (TPT) catalyst 11. Analogous to adducts formed

with acrylates and phosphonates, the tail-to-tail dimer 47

formed, although this was also accompanied by a small amount
of trimer 48 (Scheme 14).[22] Mechanistically, it would appear
that formation of the first enediamine (i.e. 49) is followed by

coupling to an acrylamide to give enolate 50. This can then
either eliminate the NHC to give the dimer 47, or tautomerize to
the second enediamine (i.e. 51). The latter pathway then allows a

third acrylamide to be incorporated, to give 52, which then
eliminates the NHC to give trimer 48.

Repeated formation of the enediamine can also be inferred

from deuterium labelling studies reported by Matsuoka
(Scheme 15).[23] Specifically, when acrylate 53 is dimerized
in the presence of deuterated methanol, isotope incorporation is
observed in product 54 that is consistent with formation of a

second enediamine (i.e. 55) before elimination of the NHC.
The potential utility of multiple enediamine formation was

recently exploited with the development of dimerizing/cycloi-

somerization, and cycloisomerization, reactions by Lupton and
coworkers (Scheme 16).[24] The former reaction design was
possible using homochiral NHC 56, allowing several cyclohex-

anones (i.e. 57) to be prepared (Scheme 16a) with high levels of
enantioselectivity. The second reaction design was achieved
with achiral catalysts 58. A lack of reactivity with chiral NHCs

was attributed to the decreased nucleophilicity of these cata-
lysts,[25] thusmaking them unsuitable for substrates in which the
three electrophiles are linked through the a-position of the first
conjugate acceptor (Scheme 16b). Mechanistically, these reac-

tions are related. If we consider the latter reaction it likely
commences by 1,4-addition and tautomerization to provide

enediamine 59 (Scheme 16c). This species then undergoes an
intramolecular conjugate addition to give enolate 60, which

tautomerizes to give the second enediamine 61. This species
undergoes the second cyclization to give 62, which following
elimination of the catalyst, provides the bicyclic product 63.

The fine lines between dimerization, oligomerization, and

polymerization as outcomes in reactions involving the enedia-
mine were exemplified in studies by Matsuoka reported in 2013.
Using methyl acrylate in the presence of imidazolium-derived

NHC 12, the tetramer 64 was produced (Scheme 17a).[26] A
mechanismwas postulated inwhich enolate 65 is initially formed
and undergoes a Michael addition, followed by tautomerization

enediamine 49

10 mol-% 11,
toluene, 105°C

N

N
N

Ph

Ph

46

11

47, 46 % 48, 11 %

+

Ph

N
N

N
Ph

Ph

Ph

N
N

N
Ph

Ph

Ph

(CH3)2NOC

N
N

N
Ph

Ph

Ph

+11
–11

N
N

N
Ph

Ph

Ph

–11

enediamine 5150 52

CON(CH3)2

CON(CH3)2

(H3C)2NOC
CON(CH3)2

CON(CH3)2

(CH3)2NOC (CH3)2NOC

CON(CH3)2

CON(CH3)2

CON(CH3)2

(H3C)2NOC
CON(CH3)2

CON(CH3)2

Scheme 14. Dimerization and trimerization of acrylamide 46.

N

N
N

Ph

Ph

Ph

DD

D

D

D
N

N

N Ph
Ph

Ph

D

D
N

N

N Ph
Ph

Ph

D
enediamine 55

53

11

2 mol-% 11•MeOH,
2 equiv. CH3OD

CO2
nBunBuO2C

CO2
nBunBuO2C

CO2
nBunBuO2C

22 % 73 %

1,4-dioxane, 140°C

75 %

54, 18 %

CO2
nBu

Scheme 15. Matsuoka’s deuterium labelling studies.

CO2Et

O

Ph Ph

O

H

H

CO2Et

Ph

O

H

H

CO2Et

CO2Et

O

Ph

N
N

N

Mes

CO2Et

O

Ph
N

N

N
Mes

CO2Et

N
H

N
N Mes

O

Ph
CO2Et

N

N
N Mes

O

Ph

Ph

O

H

H CO2Et

N N

N Mes

58

20 mol-% 58•HBF4,
20 mol-% KHMDS,
THF, 50°C, 2–16 h

N
N

N

Mes

BF4

58

enediamine 61

enediamine 59

20 mol-% 56•HBF4,
20 mol-% KHMDS
DCE, Δ, 2–16 h

O

CH3

O

O

H3C

H3C

H

56

N
N

N

Mes

O
Me

Me

Ph

BF4

O

CO2Et

H3C

H3C

EtO2C

63, 52 %, >20 : 1 dr
plus 17 other examples

57, 98 %, 98 : 2 er
plus 12 other examples

(a)

(b)

(c)

60

62

63

EtO2C

CH3

CH3

EtO2C

CH3

+

Scheme 16. (a) Dimerizing cycloisomerization via multiple enediamines.

(b) Cycloisomerization via multiple enediamines. (c) Proposed mechanism.

KHMDS¼ potassium hexamethyldisilazide; DCE¼ dichloroethane.

Polarity Inversion of Conjugate Acceptors 5



to yield enediamine 66 (Scheme 17b). Its addition into a third
acrylate then gives enolate 67, which adds to a fourth acrylate in a
second Michael addition to give 68. Finally, tautomerization to

give 69, followed by Dieckmann reaction and elimination of the
NHC, gives cyclopentenone 64.

A related trimerization exploiting both enolate and enediamine
intermediates was reported by Taton and coworkers when methyl

methacrylate was exposed to an equivalent of NHC 70

(Scheme18).[27] In this case, the ylide71was isolated in 51%yield.

Miscellaneous Reactions of the Enediamine

The intermediacy of the enediamine was exploited by Scheidt

and coworkers in the rearrangement of 1,1-disulfone 72 to

1,2-disulfone 73, within the context of a [3þ 2] annulation.[28]

Crossover experiments confirmed the formation of the enedia-

mine intermediate 74, followed by ejection of the sulfonate and
recombination to give 75. Finally, elimination of NHC 76 pro-
vided the substrate for the [3þ 2]-dipolar cycloaddition with

nitrone 77 to give 78 (Scheme 19).
Arylogous acrylonitrile 79 has been shown to undergo

tail-to-tail dimerization reactions to give dinitrile product
80 (Scheme 20). The groups of Glorius[29] and Matsuoka,[23]

using conditions similar to those already reported (Scheme 8),
were able to execute this coupling reaction with good yields.

Catalyst Selection

As is common in studies on NHC-organocatalysis, a broad array

of catalysts have been reported. In some cases, it can be seen that
a systematic investigation into the NHC suited to the reaction
design has been undertaken, although this is not always the

case. Limiting factors such as accessibility can influence cata-
lyst selection. With this said, a few general comments to guide
NHC selection for this type of reaction can be made. First, the
use of triazolium-derived NHCs bearing electron-withdrawing

N-substituents, such as N-C6F5 or N-2,4,6-Cl3C6H2, has not
been reported. These are common NHCs used in the polarity
inversion of aldehydes. Their absence is likely related to a higher

degree of nucleophilicity required for the 1,4-addition. In our
studies, we have examined a range of NHCs in all enantiose-
lective reaction designs and found that in most, but not all,

designs, higher-nucleophilicity carbenes are ideal.
Another feature evident in the studies presented herein is that

b-unsubstituted Michael acceptors are most common, with only
a limited number of reactions with a b-substituent reported. In
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these cases, more nucleophilic triazolium (or indeed
imidazolium)-derived NHCs or forcing conditions are required.

Presumably, this correlates with a decrease in electrophilicity of
substrate bearing b-substituents.[30]

Conclusions

Catalysis via polarity inversion of conjugate acceptors was
reported little more than a decade ago and, after an induction

period, is beginning to receive attention within the community.
Trends in catalyst selection and substrate suitability are
becoming clear, allowing new reaction designs to be estab-
lished. There are still several limitations in this field, with only

tentative forays into enantioselective catalysis reported, and a
limited number of reaction designs that exploit electrophilic
partners that are not a Michael acceptor. The next stage of

development for this type of reaction is likely to involve an
expansion of the range of electrophilic partners, and the creation
of more general solutions to enantioselectivity.
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