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Accurate prediction of the separation conditions for a set of target analytes with no retention data available is fundamental
for routine analytical assays but remains a very challenging task. In this paper, a quality by design (QbD) optimisation
workflow capable of discovering the optimal chromatographic conditions for separation of new compounds in

hydrophilic-interaction liquid chromatography (HILIC) is introduced. This workflow features the application of
quantitative structure�retention relationship (QSRR) methodology in conjunction with design of experiments (DoE)
principles andwas used to carry out a two-level full factorial DoE optimisation for amixture of pharmaceutical analytes on

zwitterionic, amide, amine, and bare silica HILIC stationary phases, with mobile phases containing varying acetonitrile
content, mobile phase pH, and salt concentration. A dual-filtering approach that considers both retention time (tR) and
structural similarity was used to identify the optimal set of analytes to train the QSRR in order to maximise prediction

accuracy. Highly predictive retention models (average R2 of 0.98) were obtained and statistical analysis of the prediction
performance of the QSRRmodels demonstrated their ability to predict the retention times of new compounds based solely
on their molecular structures, with root-mean-square errors of prediction in the range 7.6–11.0%. Further, the obtained
retention data for pharmaceutical test compounds were used to compute their separation selectivity, which was used as

input into a DoE optimiser in order to select the optimal separation conditions. Experimental separations performed under
the chosen optimal working conditions showed good agreement with the theoretical predictions. To the best of our
knowledge, this is the first study of a QbD optimisation workflow assisted with dual-filtering-based retention modelling to

facilitate the method development process in HILIC.
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Introduction

Much effort has been directed towards the optimisation of
high-performance liquid chromatography (HPLC) methods in
pharmaceutical analysis.[1,2] Despite extensive endeavours,

HPLC method development remains largely a trial-and-error
process requiring a substantial investment of human and
financial resources. HPLC method development has become

even more challenging in recent years owing to the proliferation
of new stationary phases with varying chemistry demonstrating
complex retention mechanisms.[3–6] The investigation of factors
governing chromatographic separation mechanisms remains an

area of active research, but often the prediction of retention
using a retention equation derived only from full understanding
of the separation mechanism is not a viable prospect.[7] For this

reason, a key objective in the development of a fast and reliable
analytical chromatographic methodology as a routine tool in

pharmaceutical analysis is to use a priori computational tools

whereby the chemical structure of an analyte can be used to
make a retention prediction of sufficient accuracy to identify
broad chromatographic conditions that meet the optimal

level of performance requirements for the separation of com-
pounds in interest. Thus, the goal of the retention prediction
process is to enable the operator to choose which stationary

phase is to be used and the approximate composition of the
mobile phase. This goal can be defined as ‘scoping’ the chro-
matographic method and it is always expected that scoping will
be followed by a detailed experimental optimisation step.

However, if scoping can be undertaken without experimenta-
tion, the process of method development is accelerated greatly.
Typically, a retention time prediction accuracy of ,10% is

sufficient for scoping and is the target range for retention
predictions.
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In terms of computational methods in analytical method

development, the application of quality by design (QbD) con-
cepts is promising.[7–11] Most recent method optimisations have
indicated that modern QbD strategies are indeed capable of

making a prediction about the method operable design region
with a high degree of fidelity.[7] Such investigations havemainly
been made possible by the incorporation of a design of experi-
ments (DoE)[12,13] philosophy into the QbD methodology,

which allows rapid determination of multiple optimal assay
parameters while leading to aminimised assay development and
optimisation timeline. However, the application of this idea is

hampered by a lack of prediction accuracy for an external test
set. Fortunately, the strategy of pairing a theoretical predictive
tool with a DoE philosophy provides an attractive statistical

approach well suited to address this challenge.
Quantitative structure–retention relationships (QSRRs),

which model chromatographic retention as a sum of theo-
retically generated molecular descriptors based on chemical

structure, are of considerable interest in HPLCmethod develop-
ment.[14,15] However, owing to the frequently poor predictive
ability of QSRRs, use is often made of the insertion of strategies

to improve accuracy, such as molecular descriptor optimisers,
feature selection tools, and training subset selectors.[16–19]

Previous studies from our group have shown the very significant

advantages gained by careful selection of the set of compounds
used to train the QSRR.[7,8,20–23] In particular, we have shown
that filtering a database of compounds with known molecular

descriptors and known retention times to identify a subset of
the most relevant training compounds can greatly improve
prediction accuracy. For example, such filtering can be per-
formed using a mathematical measure of structural similarity

(such as the Tanimoto Similarity Index[24]) to find only those
compounds in the database that are structurally similar to the test
analyte for which retention is to be predicted.[21,25,26] We have

also constructed highly accurate local retentionmodels based on
chromatographic similarity searching found by comparing
retention factors of database compounds with that of the test

analyte.[27] Very recently, we have combined structural similar-
ity and chromatographic similarity in an efficient dual filtering
approach consisting of three main steps.[28] First, structural
similarity was used as a primary filter to identify a subset of

database compounds having structural similarity values above a
chosen threshold. Second, a reference compound was chosen
from the similarity subset by finding the molecular descriptor

having the best correlation with retention time and then identi-
fying which database compound had the closest value of that
descriptor when compared with the test analyte. Finally, this

reference compound was used to find which compounds in the
similarity subset showed similar retention times to the reference
compounds. This filtering architecture allows both structural

similarity and chromatography similarity considerations to be
used to find the optimal set of database compounds to train the
QSRR model.

Herein, we describe a QbD optimisation protocol trained to

learn in parallel the relationships between the experimental
parameters and the structures of known analytes, and to apply
these relationships to predict the separation conditions of new

analytes that have not been utilised in the modelling process.
The performance of this approach is demonstrated by predicting
possible separation conditions for a mixture of pharmaceuticals

analysed in the hydrophilic interaction liquid chromatography
(HILIC) mode. HILIC[8,29–31] has attracted considerable atten-
tion in the last two decades, primarily because of its advantages

for polar compounds and enhancements in mass spectrometry

detection sensitivity[29] as a result of the use of high concentra-
tions of organic solvents in HILIC mobile phases. However, the
retention mechanism of HILIC is still not fully understood,

making HILIC an ideal candidate for the computational reten-
tion predictions used in the present study. In a prior report, we
proposed a QbD workflow aided by a compound classification-
based QSRRmodel to determine optimal separation predictions

of different pharmaceutical target sets in a HILIC system.[32]

The most important assessment of the QbD method lies in
determining its accuracy for never-analysed compounds for

which the experimental results cannot be forecast based solely
on the DoE equation. The QbDmethod was therefore examined
to measure its predictive power for new compounds in a holdout

set that was kept hidden from model training. Given our earlier
success in applying an integrated QSRR-DoE procedure to
predict the optimal conditions for unseen compounds,[7,8,32]

we wished to extend the performance of the QbD workflow by

implementation of a more advanced training subset selection in
the hope of deriving more reliable QSRR models. This study
therefore illustrates the first example of a QbD optimisation

protocol that uses a combination of dual-filtering-based QSRR
calculations andDoE principles for prediction of the retention of
never-analysed pharmaceutical compounds over awide range of

HILIC stationary phases and mobile phase conditions.

Results and Discussion

The overall workflow used in this study followed the general
sequence shown in Fig. 1. Full details of the procedures used are

provided in the Experimental section.

DoE Modelling

Owing to limited understanding of the separation mechanism in

the HILIC mode and the large number of parameters engaged in
the performance of HILIC methods, optimisation is still typi-
cally being implemented via a trial-and-error approach[33] in

which one variable is assessed at a time, requiring huge effort,
resources, and time. In addition, this univariate method devel-
opment strategy consumes large amounts of organic solvent,
leading to potential environmental damage. In contrast, a DoE

approach allows multivariate analysis, accounts for linear and
quadratic relationships, identifies interactions between vari-
ables, utilises the minimal number of experiments, and provides

a greater understanding of the method performance.[12,13,34]

As a starting point, three influential HILIC mobile phase
parameters[8,31,35] were varied: pH, acetonitrile content, and salt

concentration at two levels (see Table 1). With three replicates
being performed at the middle point, this represented a total of
11 separate experiments (Table S1, Supplementary Material),

which is far less than the number used typically in the trial-and-
error approach. The results from the full factorial DoE were
analysed in model generation and validation as well as estima-
tion of linear, quadratic, and interaction effects of all the

investigated parameters. The retention data were fitted using
multiple linear regression analysis[36] as the most common
regression method utilised in DoE assay. However, this initial

fit yielded residuals (i.e. differences between observed and
predicted retention times) that were highly scattered, indicating
that non-significant factors were included in the model. The

f-tests of statistical importance for the model and P-test for each
single coefficient were applied to identify the significant factors
and to estimate their coefficients. The insignificant parameters
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that were not involved in significant interactions were excluded

in the finalmodel. The remaining factors in the finalmodel show
significant impact (P, 0.005) on the retention time (tR)
response. Eqn 1 below shows the final model.

tR ¼ b0 þ b1 � X1 þ b2 � X2 þ b3 � X2
1 þ b4 � X1X2 ð1Þ

where X1 and X2 are organic solvent content and salt concentra-
tion, respectively. The values of the model regression coeffi-

cients (b) and their statistical analysis for each of the four HILIC
columns tested are summarised in Tables S2–S5 in the Supple-
mentary Material.

Fig. 2a shows the correlation between predicted and experi-
mental retention times, average adjusted R2 and average R2

values of 0.97 and 0.98, respectively, over all four HILIC

stationary phases. Fig. 2b shows the distribution of the residual

error. For analysing the retention behaviour of investigated

nucleosides, Fig. S1 in the Supplementary Material shows the
ranking chart of the final model terms, with the most substantial
effect assigned to rank 1. Not surprisingly, the factors acetoni-

trile content and its quadratic term have major positive coeffi-
cient evaluations over all studied HILIC conditions, meaning
that an increase of the content of organic solvent in the assay

yields a higher retention time. This observation is consistent
with the current knowledge of the HILIC retention mechanism
and theory, namely that higher organic solvent content promotes

hydrophilic partitioning into a static water layer on the surface of
the stationary phase, leading to higher retention.[8] A moderate
positive effect of salt concentration was also observed on the
retention behaviour of nucleosides over all four HILIC system,

due possibly to the promotion of stronger hydrophilic partition-
ing at higher salt concentration resulting from salting-out
effects.[8] The absence of the pH term in the DoE models was

evidence of insignificant ion-exchange contributions to the
retention behaviour of the nucleosides on the studied HILIC
stationary phases.

While the DoE model describes the retention behaviour of a
given set of analytes over the design space, it is not capable of
predicting retention and consequently defining the optimal

separation condition of unknown test probes. To address this
issue, we introduced a QSRR modelling approach in conjunc-
tion with DoE principles into a QbD workflow.

Table 1. Full factorial design to optimise the HILIC method develop-

ment assay

Low level Mid level High level

Acetonitrile content [%] 70 80 90

pH 3 5 7

Salt concentration [mmol L�1] 10 15 20

setup

find TS cluster

find the reference

find tR similarity cluster

Predict tR for target analytes

Predict `e for target pairs

Create GA-PLS model

Derive DoE model for targets
` = a0 + a1(Xf

1) + a11 (X1)2 + a12 (X
1X2) +...

Predict optimum separation conditions

Evaluate QSRR-DoE model

1. Load target molecule
2. Select the TSa cutoff
3. Select kb-ratio cutoff

1. Calculate TS against target
2. Sort database molecules list by TS
3. Retrieve most similar neighbours

1. Find a highly correlated MDc to t
R

d

2. Find the nearest neighbour to
    target by applying the absolute
    difference of descriptor values

1. Calculate k-ratio against the reference
2. Sort molecule list by k-ratio
3. Retrieve most similar neighbours

Fig. 1. Scheme of the QSRR-DoE protocol followed in this study. aTanimoto similarity; bretention factor; cmolecular

descriptor; dretention time; eselectivity factor; and fHILIC mobile phase parameters.
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Training of Dual-Filtering-Based QSRR Models

Previous studies have suggested that accurate predictive QSRRs
can be generated in the case where tR similarity filtering was
applied to search for a training subset of compounds that are

chromatographically similar to the target analyte.[7,8,27] Tani-
moto similarity searching provides a perfect starting point for
the application of tR similarity filtering in the determination of

chromatographic similarity.[28,37] In the present study, predic-
tion performance of the model was examined on a test set of 16
nucleosides under 11 mobile phase compositions corresponding

to a full factorial design matrix and over four different HILIC
stationary phases. Each nucleoside was successively removed
from the dataset and retained as the test target and was not used
during the training course. Tanimoto similarity searching was

performed to find a cluster of structurally similar database
compounds with a Tanimoto similarity score above 0.5. To
implement tR similarity filtering, the correlation between tR and

molecular descriptors for the structurally similar analytes was
applied to identify the most highly correlated molecular
descriptor. For each nucleoside used as the test analyte, strong

correlation (R2. 0.8) between tR and the HOMT molecular
descriptor (Harmonic Oscillator Model of Aromaticity index
Total) was observed for compounds within the similarity cluster

over all mobile phase compositions and stationary phases used
in this study. This descriptor was used to rank the structurally
similar analytes to determine the analyte having the smallest
absolute difference of HOMT value compared with the test

analyte. This analyte was then used as a reference compound to
identify only those compounds from the structurally similar
analytes having a k-ratio value (the ratio of the retention factor

values between each compound within the first cluster and the
reference analyte) within the range of 1.0–1.5. The final subset
of compounds selected in this way was then used to construct a

local model for each target analyte for each of the experimental
chromatographic conditions under study, utilising both the
experimental retention data and the relevant DFT (density
functional theory)-computed molecular descriptors of com-

pounds as input into the training course. Models were then used
to predict retention factors of all test compounds for all chro-
matographic systems. A summary of the overall performance of

QSRR models for each chromatographic condition in the
experimental design is presented in Table S6 (Supplementary
Material), with internal validation by root mean square error

cross-validation (RMSECV) and cross-validated coefficient of

determination Q2
CV giving a range of 0.00–0.31 and 0.97–0.99,

respectively, over all analysed mobile phase compositions and
HILIC stationary phases, indicating good agreement between

the predicted and experimental retention values. The predicted
retention factors of the test compounds are given in Tables
S7–S10 (Supplementary Material) for each of the experimental

chromatographic conditions.
External validation was carried out to assess the predictive

ability of the localised QSRRmodels for target analytes that had

not been used in either the feature selection process or training of
the QSRR model. Relevant descriptor data for these test com-
pounds were used as input for the genetic algorithm-partial least
squares (GA-PLS) regression models and the corresponding

retention factors were computed and compared with experimen-
tally measured retention factors. Table 2 summarises figures of
merit. Prediction accuracies of retention data are averaged over

all chromatographic conditions and presented as root mean
squared error prediction percentage (RMSEP%) values of
10.2, 7.6, 11.0, and 8.7 % for zwitterionic, amide, amine, and

bare silica columns, respectively (Fig. 3). The normal distribu-
tion of residual error (Fig. S2 in the Supplementary Material),
the small scattering of data, and the absence of notable outliers
prove the potential of the localised QSRR models for the

prediction of retention data over a wide range of chro-
matographic conditions.

Prediction of Separation Conditions

After generating the dual-filtering-based QSRR models, the
question of optimisation of separation conditions for test
nucleosides over four different HILIC stationary phases was

addressed. Although there are useful and efficient protocols for
selecting an optimal chromatographic condition for the sepa-
ration of specific analytes,[7,38,39] we are not aware of other

studies describing the prediction of the separation conditions for
unknown analytes with acceptable accuracy. In our previous
work, we used a compound-classification-based QSRR model-
ling process that was introduced into a QbD workflow for the

separation of three small test sets of analytes on a HILIC amide
stationary phase.[32] In the present study, the aimwas to upgrade
the performance of this existing workflow by taking advantage

of a dual-filtering strategy for training selection. The perfor-
mance of the predictivemodels for the separation of amixture of
pharmaceutical analytes over zwitterionic, amide, amine, and

bare silica HILIC columns was examined.
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Fig. 2. DoE analysis for 16 nucleosides over four HILIC systems. A total of 704 data points is included. (a) Predicted

retention times versusmeasured retention times. (b) Normal probability plot of the residuals suggesting that residuals are

normally distributed.
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The retention factors predicted in the section Training of

Dual-Filtering-Based QSRR Models above were used to calcu-

late the selectivity values (a) for all target pairs as the measured
response for DoE optimisation. The experimental domain was

explored by applying the optimiser tool of MODDE 10 soft-
ware[40] to reveal the experimental condition where the best

separation of the target analytes was achieved. The percentage
risk of failure of the separation, with failure being represented as

Table 2. Summary of prediction errors for each stationary phase at each experimental condition

Errors 1 2 3 4 5 6 7 8 9 10 11 Average

Zwitterionic MAE 0.04 0.27 0.04 0.24 0.04 0.31 0.04 0.31 0.08 0.09 0.10 0.14

RMSEP 0.05 0.48 0.05 0.34 0.05 0.40 0.06 0.45 0.10 0.11 0.13 0.20

MAE% 6.91 7.39 5.02 7.92 5.70 9.27 6.00 7.66 7.81 7.42 7.60 7.15

RMSEP% 10.01 11.19 6.16 10.10 8.90 12.77 9.72 11.03 11.25 10.91 9.63 10.15

0.94 0.94 0.95 0.98 0.96 0.99 0.93 0.98 0.95 0.96 0.94 0.96

Amide MAE 0.01 0.15 0.02 0.19 0.02 0.12 0.02 0.17 0.06 0.07 0.06 0.08

RMSEP 0.02 0.24 0.03 0.28 0.02 0.17 0.03 0.26 0.11 0.11 0.10 0.12

MAE% 3.26 5.46 4.37 7.43 3.60 5.29 3.90 5.79 6.44 7.07 6.39 5.36

RMSEP% 4.79 7.92 6.27 9.47 4.48 6.92 5.46 7.55 10.18 10.52 10.37 7.63

0.97 0.97 0.94 0.96 0.98 0.99 0.96 0.98 0.90 0.90 0.90 0.95

Amine MAE 0.06 0.27 0.05 0.21 0.12 0.60 0.05 0.44 0.11 0.08 0.11 0.19

RMSEP 0.07 0.39 0.07 0.31 0.16 0.80 0.07 0.55 0.15 0.11 0.15 0.26

MAE% 7.02 9.36 5.91 6.41 10.93 9.72 6.63 11.38 8.12 6.26 7.38 8.10

RMSEP% 9.47 13.61 9.03 8.32 13.16 13.21 9.74 16.01 11.47 8.10 8.78 10.99

0.93 0.97 0.95 0.98 0.77 0.98 0.95 0.98 0.95 0.97 0.94 0.94

Bare silica MAE 0.02 0.12 0.01 0.11 0.02 0.24 0.02 0.37 0.03 0.05 0.03 0.09

RMSEP 0.03 0.14 0.02 0.15 0.03 0.32 0.03 0.61 0.03 0.08 0.04 0.13

MAE% 6.19 8.53 4.34 6.16 5.08 9.61 5.46 8.87 3.67 5.72 5.64 6.30

RMSEP% 9.18 10.94 7.15 7.68 6.47 11.91 8.61 11.48 4.56 8.38 9.08 8.68

0.94 0.98 0.96 0.98 0.95 0.97 0.94 0.95 0.98 0.87 0.97 0.95
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Fig. 3. Predictive ability of dual-filtering-based GA-PLS models for external validation sets of 16 nucleosides

over all 11 experimental conditions corresponding to the usedDoEmatrix for (a) zwitterionic; (b) amide; (c) amine;

and (d) bare silica systems. RMSEPavr. is the average value of root mean squared error in prediction of target

analytes over all studied conditions. A total of 44 points is included on each plot.
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a, 1.15, was selected as the performance criterion. Monte
Carlo simulations[41] were carried out to generate the model

uncertainty and to estimate the probability of the defined response
criterion, allowing the identification of the region of the design
space where optimal separation conditions are located. In this

case, a percentage risk of failure below 2% was computed. The
choice of the working condition can be made at any point inside
the defined design space, but normally this is selected to bewhere
the risk of failure is lowest. To simplify the display, it is common

practice to fix the value of one experimental parameter and to
show a two-dimensional representation of the design space over
which two experimental factors are varied. Fig. 4 displays the

risk of failure plots as the two-dimensional combination of
%acetonitrile and pH using a fixed salt concentration of
16.7mmolL�1, for each column, together with the experimental

chromatogram obtained under the selected chromatographic

conditions. A comparison between the experimental and pre-
dicted retention times showedgoodagreement (seeFig. 5, Table 3

and Table S11 in Supplementary Material). In general, the
averaged RMSEP% value of 12.16 for zwitterionic, amide,
amine, and bare silica systems shows a high level of agreement

between observed and predicted retention data of all test com-
pounds under the selected working conditions.

Using this QbD optimisation protocol, coupled to the QSRR
retention modelling tool, prediction of the optimal separation

conditions can be performed for unknown analytes based only
on their chemical structures.

Conclusions

We have demonstrated a new QbD optimisation workflow that
can be effectively employed to extract chromatographically
meaningful knowledge from a retention database. The new
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workflow features the combination of the DoE principle and

QSRR strategy aided by a dual-filtering technique for selection
of the training subset of analytes. This QbD optimisation pro-
tocol was able to discover optimal chromatographic separation

conditions for a mixture of nucleosides over four HILIC sta-
tionary phases, based on chemical structures of the analytes.We
propose that this combination of features will prove to be a
useful strategy in the optimisation process of other chro-

matographic separation techniques.
Application of this computational method to predict optimal

gradient separation conditions for routine assays is the goal of

our ongoing program.

Experimental

Database of Compounds with Known Structures and
Retention Times

In this work, an in-house database comprising 61 HILIC con-
ditions for 114 pharmaceutical compounds was used.[42] This
database contains analytes having a wide diversity of chemical

structures and is representative of typical polar compounds used
as analytes in HILIC. For the current study, we selected the
retention data of 16 nucleosides generated on four Thermo
Fisher Scientific HILIC stationary phases of differing func-

tionalities, namely bare silica (Accucore, 4.6mm ID� 150mm,
2.6 mm), amino (Syncronis amino, 4.6mm ID� 150mm,
3.0 mm), amide (Acclaim HILIC-10, 3.0mm ID� 150mm,

3.0 mm), and a zwitterionic stationary phase (Syncronis, 4.6mm
ID� 150mm, 3.0mm). Mobile phase compositions of formate

buffer and acetonitrile corresponding to the 11 conditions of a

full factorial design experimental matrix were used. The flow
rate was 1.0, 1.0, 0.4, and 1.5mLmin�1 for the amine, zwit-
terionic, amide, and bare silica stationary phases, respectively.

Details of methods and materials used for generation of the
retention database can be found elsewhere.[42]

Computation of Molecular Geometries and Descriptors

The computations presented in this study were carried out uti-
lising DFT molecular geometries.[43,44] The lowest-energy

conformers generated initially by MMff9446[45–48] in Bal-

loon,[49] were fed as input into the semiempirical Parametric
Method number 7 (PM7)[50] geometry optimiser performed in

Molecular Orbital PACkage (MOPAC).[51] The output from the
PM7 optimiser was then fed as input into aGaussian program[52]

for further structural relaxations by the implementation of the

Becke exchange with the Lee–Yang–Parr correlation functional
(BLYP)[53–56] and the 6–31G (d) basis set.[57] A solvent cor-
rection for acetonitrile was performed utilising the integral

equation formalism variant of the polarisable continuum model
(IEFPCM).[58] The above processes have been proven effective
in earlier research from our group for retention modelling on
different chromatography systems.[7,8,16,27,28,32]

The minimum-energy conformations calculated above were
used as input for Dragon software[59] to calculate molecular
descriptors. The software was capable of calculating nearly

3000 molecular descriptors, consisting of topological, constitu-
tional, geometrical, electrostatic, and quantum chemical vari-
ables. Comprehensive detail on the nature and computations of

Dragon molecular descriptors is given in the Handbook of
Molecular Descriptors.[60] The initial molecular descriptors
were reduced to 321 descriptors by discarding descriptors with
almost-constant values and/or a standard deviation below

0.0001, and also those descriptors that were highly correlated
with other descriptors (correlation coefficient. 0.90). This
dimensionality reduction minimises the information loss asso-

ciated with chance correlation. Prior to use in model generation,
all descriptors were normalised by conversion to zero mean and
unit variance to ensure that no individual descriptor dominated

the optimisation. Full details of the software library used are
available elsewhere.[16,28,32]

Generation of QSRR Models

Traditional QSRR relies on a randomly generated training set,
which often leads to poor prediction accuracy.[14,61] To tackle
this issue, we applied a dual filtering based on consideration of

both structural and chromatographic similarity. The first cluster
of database compounds was obtained by calculating pairwise
Tanimoto similarity index values[24] and selecting only those

database compounds with a threshold value above 0.5 when
compared with the test analyte. Within this cluster, a reference
compound was identified by first calculating the molecular
descriptor that was most correlated with retention time and then

locating which compound in the similarity cluster had the
closest value of that molecular descriptor to the test analyte.
Chromatographic similarity clustering[27] was then performed

by selecting only those compounds from the structural similarity
clustering subset that showed a ratio of retention factor (k)
values compared with the reference factor in the range 1.0–1.5.

The final training subset was therefore the set of compounds
showing the highest chromatographic and structural similarity
to the test analyte.

0 5 10 15 20 25
0

5

10

15

20

25

Measured retention time [min]

P
re

d
ic

te
d

 r
et

en
ti

o
n

 t
im

e 
[m

in
]

RMSEP %
avr.

 = 12.16

Fig. 5. QSRR-DoE predicted retention time versus experimental retention

time of target set of 16 nucleosides under the selected working condition

over all four HILIC stationary phases. A total of 44 points is included.

Table 3. Average prediction errors for each stationary phase

examined

Zwitterionic Amide Amine Bare silica

MAE 0.92 0.61 0.78 0.21

RMSEP 1.18 0.82 0.94 0.27

MAE% 11.22 10.81 9.33 8.44

RMSEP% 12.86 13.55 11.93 10.30

Q2
ext(F2) 0.91 0.87 0.97 0.86
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In our present implementation, each local model relating

retention data as a function of chosen molecular variables was
generated utilising partial least-squares (PLS)[62] for regression
analysis following application of a genetic algorithm[63] (GA)-

PLS method to identify the most relevant descriptors. Our in-
house GA-PLS script was based on aMatlab formula created by
Leardi,[64] with the following settings: 50 chromosomes in the
initial population, a maximum of 20 variables per chromosome

with a median selection probability of 10 variables, a mutation
probability of 1% along with a crossover probability of 50%. A
backward selection algorithm following each 100 evaluations

was designed to manage the unavoidable random selection
nature of GA. Replicates of GA-PLSmodelling were performed
to further improve the identification of the optimal set of

descriptors for the final model. We found that using five
replicates of GA-PLS descriptor selection yielded high-quality
results at reasonable computational cost.[27,28,37]

The performance of local QSRR models was achieved using

an external test set of compounds that were excluded from all
aspects of the training of the model. Each analyte from the
database was used successively as a test compound by eliminat-

ing it from the database and then predicting its retention time
using models constructed from the dual-filtered training subset.
The predictive ability of each local model was externally

evaluated utilising mean absolute error (MAE) and RMSEP
along with MAE and RMSEP normalised[65] to the retention
data of targets. The external-validated coefficient of determina-

tion Q2
ext(F2)

[66] between the experimental and the predicted
retention factors of targets was calculated. Themodels were also
examined by RMSECV and Q2

CV, which represent the internal
prediction performance of the models.

QSRR-DoE Protocol for Optimising Chromatographic
Separation Conditions

QbD is a systematic and risk-based approach to method devel-

opment and optimisation that provides the opportunity to
understand and control the method to the best possible level and
ensures both the method performance and inter-instrument

transfer with the highest likelihood of success.[10,11] An essen-
tial aspect of the QbD approach is the use of DoE philosophy to
gain the most useful information on experimental factors while

keeping the number of experiments low.[12] In the present study,
16 nucleosides from an in-house HILIC database[42] were used
as the target set to develop and validate the QbD optimisation
protocol. Fig. 1 shows the basic workflow of the QbD model

used in this study. First, the performance objective known as the
critical quality attribute (CQA)[10] was defined to be the maxi-
mum separation of compounds in the target set based on the

selectivity factor (a) with the critical value being set at a$ 1.15.
Values of awere computed using the predicted retention factors
of all pairs of analytes eluted as adjacent peaks. A two-level full

factorial DoE (detailed in the DoE Modelling section) was
selected covering the influential mobile phase parameters,
including acetonitrile content, pH, and buffer concentration,
followed by the generation of retention data on all mobile phase

compositions and all four HILIC columns (zwitterionic, amide,
amine, and bare silica). Further, dual-filtering-based QSRR
models[28] were constructed to predict retention data and con-

sequently the separation selectivity data of target compounds
that were then used as input intoMODDE software[40] to define
the most robust areas of the design space. Finally, experiments

were carried out to assess the reliability of the QbD predictions.

Supplementary Material

The design matrix with 11 independent trials; values of DoE
model regression coefficients with their statistical evaluations;
DoE model term ranking chart; the internal validation summary

of GA-PLS models; the predicted retention data of test analytes
over 11 chromatographic conditions corresponding to the DoE
matrix along with their residual plot; and the experimental and

predicted retention times of test analytes under the optimal
separation conditions are available on the Journal’s website.
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