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The duhka of DFT: a noble path to better functionals via a point 
electron approximation for the exchange–correlation hole†,‡ 
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ABSTRACT 

Density functional theory (DFT) is currently experiencing a golden age. The past two decades 
witnessed remarkable advances in the general applicability of density functionals in the top rungs 
of Jacob’s Ladder. Nevertheless, Jacob’s Ladder may have reached its highest rung in terms of 
dependencies on occupied (rung four) and unoccupied orbitals (rung five). Moreover, the fifth 
rung is associated with a computational cost far greater than the lower rungs. Another limitation 
is that each rung includes dozens of different functionals, and at present, there is no clear pathway 
for systematic improvements within each rung of the ladder. This highlight provides an overview 
of the exchange–correlation (XC) hole and how it could be used in developing new density 
functionals. We begin with a brief overview of the current status and challenges in developing 
better density functionals, followed by the intimate relationship between the XC functional and 
hole. We present a conceptually simple and computationally economical method for calculating 
the XC hole and how this method could offer new directions in developing better 
exchange–correlation functionals.  

Keywords: density functional theory, electron correlation, exchange correlation energy, 
exchange correlation functional, exchange correlation hole, Jacob’s Ladder, pair correlation 
function. 

Density functional theory 

When it comes to predicting chemical properties, density functional theory (DFT) in its 
Kohn–Sham (KS) form is today unarguably the workhorse of quantum chemistry. This is 
due to its attractive accuracy-to-computational cost ratio. In short, DFT works well, and it 
will not break your bank of computers. DFT has this remarkable status because contrary 
to the methods based on wavefunctions that depend on every electronic coordinate, DFT 
depends on the electron density ρ – a function of only three coordinates, regardless of the 
number of electrons. Today, conventional DFT methods are routinely applicable to 
systems with hundreds of atoms and even to systems with millions of atoms using 
linear-scaling and orbital-free DFT techniques. (For a comprehensive review of large 
scale DFT calculations, see ref.1). We also note that DFT is the method of choice for 
generating massive amounts of chemical data needed for training machine learning 
models.[2] 

Open secrets 

However, everyone knows DFT’s dirty little secret. There are, in fact, two of them. The 
first is that the rarely-employed Hohenberg–Kohn (HK) version of DFT – the only version 
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that depends explicitly on the electron density – is in prac
tice a dismal failure when it comes to prediction of chemical 
properties. (This failure of HK-DFT was in fact the motivat
ing reason for the more successful KS-DFT theory.)[3] The 
second, more often mentioned, is that DFT involves an 
unknown exchange–correlation (XC) functional which 
must be modelled somehow.[4–14] This incompleteness of 
DFT poses a fundamental limitation on the applicability 
and intrinsic accuracy of the theory and has led to a prolif
eration in the number of developed DFT methods over the 
past three decades, resulting in hundreds of different models 
for the XC functional.[8] From the point of view of the 
proverbial used-car salesperson then, DFT is an iconic exam
ple: it does not depend explicitly on its namesake, the 
electron density, and its contract is written without any 
guarantee of repair.[15] 

A ladder to nirvana? 

Into this density functional zoo, at the turn of the millen
nium, John Perdew shrewdly proposed his ‘Jacob’s Ladder 
of DFT’. In a loose analogy to John Pople’s two-dimensional 
diagram of systematically improved wavefunction meth
ods,[16] Jacob’s Ladder provides a route where, with suitable 
effort, one might toil upwards towards the nirvana of chem
ically accurate functionals.[17] 

The first rung of this ladder includes functionals that 
depend only on the value of the electron density through 
an energy density at a point in space, which itself depends 
only on the electron density at that same point, the so-called 
local density approximation (LDA). On the next rung is the 
generalised gradient approximation (GGA), which employs 
in addition the (reduced) gradient of the electron density at 
that point. By now you have the idea: the third rung, the 
meta-GGA (mGGA) functionals, employ in addition the sec
ond derivatives of the density at that point in the form of the 
Laplacian or the local kinetic energy density (the latter 
requiring not only the electron density but the KS orbitals 
themselves). This third rung is the last which can be 
regarded as ‘pure’ DFT, that is, DFT functionals that depend 
only on the electronic density and its gradients. 

The fourth rung on the ladder involves admixing some 
component of the exact Hartree–Fock (HF) exchange. These 
functionals are therefore referred to as hybrid functionals. 
The fifth rung additionally involves admixing second-order 
Møller–Plesset perturbation theory (MP2) correlation 
energy. These functionals are referred to as double-hybrid 
DFT (DHDFT) functionals. The justification for these steps 
within the framework of DFT is the adiabatic connection 
formula of Harris and Jones.[18] Notwithstanding, it is hard 
to say that a combination of DFT with post-Hartree–Fock 
wavefunction theory really constitutes a DFT method at all; 
as Becke puts it, ‘I think KS-DFT is about occupied 
orbitals only’.[19] 

Formally the computational cost of DHDFT methods is 
higher by 1–2 orders of magnitude relative to semi-local and 
hybrid DFT methods. The increase in computational cost of 
DHDFT relative to conventional DFT methods is further 
exacerbated by the need to use larger basis sets due to the 
slower basis set convergence of the MP2-like correlation 
term. Most chemical properties require at least a 
quadruple-zeta (ζ) quality basis set for obtaining results 
sufficiently close to the basis set limit.[10,20] Thus, a major 
disadvantage of functionals from the fifth rung of Jacob’s 
Ladder is that they are applicable to substantially smaller 
systems relative to functionals from the lower rungs. 

Empirical or nonempirical? 

Another useful way to classify DFT functionals is as being 
nonempirical or empirical. Nonempirical methods attempt 
to model the XC functional by satisfying known exact 
conditions.[21,22] Examples of popular nonempirical XC 
functionals are the GGA PBE,[23] meta-GGAs, TPSS[24] 

and SCAN,[25] hybrid-GGAs PBE0[26] and PBE0-1/3,[27] 

and hybrid-meta-GGA TPSSh.[28] Empirical methods, on 
the other hand, introduce parameters, which are deter
mined by fitting to relevant thermodynamic, kinetic, and 
spectroscopic data obtained from experiment or more 
often from high-level ab initio wavefunction theory. 
Examples of popular highly empirical functionals with 
10–40 adjustable parameters are the GGA HCTH407,[29] 

meta-GGAs τ-HCTH[30] and M06-L,[31] hybrid GGA B97-1, 
and hybrid-meta-GGAs BMK[32] and M06-2X.[33] As 
expected, empirical DFT methods tend to outperform non
empirical methods for chemical systems and properties 
that are covered in the training sets.[34–37] Nevertheless, 
this approach may lead to overfitting[38–40] and it has been 
found that heavily parameterised functionals may exhibit 
erratic basis set dependencies and grid sensitivity.[34,41–44] 

Thus, there is now a trend to develop empirical DFT func
tionals with a reduced number of parameters.[34,45–47] 

Interestingly, the ‘hyperparametric disorder’ of DFT was 
foreseen by Gill in an Essay published in the present 
journal two decades ago ‘Obituary: Density Functional 
Theory (1927–1993)’.[48] Still, we would caution, as von 
Barth does, regarding parameterisation, ‘There are cer
tainly, theoreticians who would be prone to scorn the 
described [parameterisation] procedure but we find such 
attitudes unwise’.[5] 

Considering the empirical nature of many generally 
applicable DFT methods along with the limitations of 
Jacob’s Ladder outlined above, such as the jump in compu
tational cost of methods on the fifth rung relative to the 
lower rungs and lack of guidelines for systematic improve
ments within each of the rungs, it seems to us that DFT is in 
a state of existential dukha.[49] Is there a solution out of this 
fraught situation, a middle way? 
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The exchange–correlation hole 

The concept of the exchange–correlation hole plays an 
important role in DFT. It is essentially the depression in the 
probability of finding an electron (with coordinates ‘r2’) 
around the position of a reference electron (labelled ‘r1’). 

r r r r rh( , ) = ( ) ( , )XC 1 2 2 1 2 (1)  

where by definition 

r r
r r

r r
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( ) ( )

11 2
2 1 2

1 2
(2)  

and where ρ2 is the second-order reduced density matrix.[3] 

From the above, we see that ρ(r1)ρXC(r1, r2) is the difference 
between the exact electron pair distribution and the classical 
distribution comprising a product of the electron densities of 
the two electrons. In the early days, Gunnarson and 
Lundqvist explain the success of LDA, the first rung, by 
casting it as an approximation to the exchange–correlation 
hole with the correct sum rule.[50] Importantly, the DFT 
exchange correlation energy EXC can be obtained very easily 
from a knowledge of the XC hole 

r r rE
r

r r= 1
2

1 ( ) ( , )d dXC
12

1 XC 1 2 1 2 (3)  

Thus, the functional of the exchange–correlation energy in 
terms of the exchange–correlation hole is known – a starting 
point not shared by the usual DFT functional of the electron 
density (where r12 is the interelectronic distance). Gunnarson 
et al. later developed more refined models based on this hole 
approximation idea, which were much better than the 
LDA.[51] Colle and Salvetti developed an approximate for
mula for the correlation energy for a special kind of wave
function with the correct electron–electron cusp.[52] This was 
later simplified by Lee, Yang, and Parr by avoiding the 
dependence on the on-top pair density to form the widely 
used LYP exchange correlation function of the density and its 
gradient.[53] The hole-modelling idea has also been used by 
Becke and Roussel to make a very simple two-parameter 
exchange energy functional,[54] by Becke and Johnson to 
develop elegant van-der-Waals density functionals,[55] and 
by Baerends for orbital-dependent DFT functionals.[56] 

Point electron approximation as a model to 
generate exchange–correlation holes 

Obtaining the exchange correlation hole is challenging 
because it requires knowledge of the pair electron density, 
which, although obtainable from the wavefunction or quan
tum Monte Carlo calculations, is nevertheless computation
ally demanding, if not intractable for larger systems. There 
seem to be very few pictures of these in the literature, for 

example for H2 and Si(s).[57–59] From the existing images 
one learns that the exchange correlation hole is not spheri
cal, and it extends onto nearby nuclei. This explains why a 
Taylor-series idea like the Jacob’s ladder scheme must nec
essarily be limited in its scope. We present here an idea to 
obtain a proxy for this quantity which is easier to calculate. 

Suppose we have a program that can calculate a wave
function for a given set of nuclei placed at some positions in 
space. The wavefunction may be as accurate as one desires 
HF, MP2, or CCSD (i.e. coupled cluster with single and 
double excitations). Consider now removing one electron 
from the system and placing it at a fixed position in space 
rfixed, just like the other nuclei in the system. If the program 
makes use of atom-centered basis sets, then place a basis set 
onto this electron. Next, solve the Schrödinger equation for 
the wavefunction of the remaining electrons. Then clearly, 
the electron density ρN–1(r1, rfixed) from this wavefunction is 
a very good proxy for ρ2(r1, rfixed) from which the 
exchange–correlation hole can be derived (Eqns 1, 2) 
(where N is the number of electrons in the original system). 

Of course, this is not the exchange-correlation hole for the 
original system because one electron has been removed, but if 
the basis set on the electron is large, then one at least expects 
that the electron–electron cusp condition is well modelled – 
at least as well as the electron–nuclear cusp condition is on 
the remaining nuclei. One may collect as many of these 
pseudo exchange–correlation holes as one likes, simply by 
placing the fixed electron at distinct positions in space. From 
this, one can even calculate a pseudo exchange correlation 
energy via Eqn 3, integrating only over the coordinate of the 
first (unfixed) electron. Furthermore, placing the electron at 
the positions of a DFT integration grid would make it possible 
to integrate this quantity over all space, and calculate a 
pseudo electron–electron exchange correlation energy. 

It is important to keep in mind that the pseudo exchange- 
correlation energy of the system with n–1 electrons calcu
lated via a fixed electron as described above, will approach 
that of the real system with n electrons in the limit of a large 
number of electrons. Regardless of this limiting situation, 
we think that the pseudo exchange–correlation holes gener
ated by this procedure form a simple, effective, and practical 
way to collect information pertaining to the real exchange 
correlation hole. 

What to do with the information? 

One idea immediately comes to mind. One can collect infor
mation concerning the exchange-correlation energy, the 
pointwise pseudo exchange-correlation energy from the 
procedure above, information about the electron density of 
the other electrons at the point of the reference electron 
(this is the ‘on-top’ pair density) as well as other quantities, 
such as the gradient of the electron density, the second 
derivative, the kinetic energy density, the asphericity of 
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the exchange-correlation hole (parameterised by, say a 
spherical harmonic expansion), some notion of how the 
nuclei are arranged around the reference point, and the 
values of the electron density at the nuclear positions. A 
practical approach for processing these copious amounts of 
data would be through machine learning models. One may 
use this data to either improve DFT functionals using the 
standard Jacob’s ladder scheme (and then it will truly be at 
its limit) or one could model the actual exchange-correlation 
hole following the DFT pioneers. 
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