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Implementation of network embedding strategy on proteome 
datasets from multi-source cancers to demonstrate marker 
proteins of cancers 
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ABSTRACT 

The rapid production of high-throughput cancer omics data provides valuable data resources for 
revealing the pathogenesis, prognosis prediction and treatment strategies of cancers. However, 
the huge data scale brings great challenges to data analysis. Therefore, we applied the represen-
tation learning method to the joint analysis of biomedical network and omics data. According to 
the protein expression profile of patients with early-stage hepatocellular carcinoma, 15 dimen-
sional embedding vectors of 101 samples were obtained. Unsupervised learning was then used to 
cluster the embedded vectors of the samples, and we found that the clustering of the embedded 
vectors of the samples was consistent with the clustering of the original data. Therefore, the 
spatial distribution of embedded vectors can maintain the similarity of samples. New pan-cancer 
subtypes were obtained by joint embedding the expression profile of pan-cancer proteomic and 
pathway network data. Nine hunded and forty four proteins such as KIF2C, AURKA, ATP1B1, 
BDH1 and C6ORF106 were found to be significantly related to these subtypes, and 143 biological 
pathways or processes such as p53 signaling pathway, nucleotide synthesis, immune diseases, 
metabolism, cholesterol synthesis and transportation were found to be significantly related to 
these subtypes. These results show that the representation learning system developed can realize 
the seamless connection between the omics data and the pathway network. Our method is 
expected to help mine the biological knowledge contained in the omics data and provide a new 
perspective for further explanation of the molecular mechanism.  

Keywords: biological pathway, network embedding, pan-cancer analysis, proteomics, 
representation learning. 

Introduction 

High throughput quantitative proteomics technology is widely used for studying proteo-
mics, which reflect the existing state of biomolecules in the sample at a specific time and 
state, such as expression level, modification, etc. The purpose of proteomics analysis is to 
explore the relationship between biomedical entities (such as sample–protein, 
protein–protein, sample–sample relationship). However, traditional analysis strategies 
usually ignore the interactions between proteins, which makes it difficult to discover the 
potential knowledge contained in the proteomics data. Pathway networks contains a 
lot of priori knowledge, such as protein–protein interactions in pathways, which can 
supplement the information in the omics data. The combination of the two cannot only 
make full use of the corresponding relationship between the samples and molecules in the 
omics data, but also retain as much as possible the correlation information between 
the molecules in the networks, which is conducive to the full development of knowledge 
excavate. Therefore, it is necessary to combine pathway networks with omics data. 

Network embedding is a method of representation learning, which aims to express the 
associated entities and their relationships in the low dimensional semantic space. 
Specifically, it uses mathematical methods to represent the associated entities and 
their relationships with vectors in the low dimensional space, while retaining the 
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structural information of the original data set. This low 
dimensional space is called embedded space.[1] In this 
way, in the embedded space, the nodes and edges of the 
network can be expressed as low dimensional embedded 
vectors, and then such vectors can be input into typical 
and mature machine learning methods such as neural net-
work, support vector machine (SVM) and decision tree for 
training. This makes the classical machine learning model 
able to learn from network data, which was impossible 
before. Omics data can be regarded as an adjacency matrix 
of networks composed of samples and molecules.[2] Omics 
data representation learning technology is essentially a 
dimensionality reduction method, which has no require-
ments for the original distribution of data. At present, 
some work has applied representation learning to the anal-
ysis of omics data. For example, Hou et al.[3] proposed a new 
unsupervised feature selection method based on joint 
embedded learning and sparse regression (JELSR). Later, 
LJELSR[4] enhanced the JELSR algorithm by adding 
L₁-norm constraints to the regularization term, and applied 
it to identify differentially expressed genes and cluster sam-
ples of different genomic data. Embedding methods above 
have some shortcomings. On the one hand, they are linear 
dimensionality reduction. On the other hand, they only 
embed the omics data without involving priori knowledge. 
Therefore, for highly complex omics data, the amount of 
information is not fully utilized. Single Cell Rep- resentation 
Learning (SCRL) method[5] embedded the single-cell tran-
scriptome data with the pathway networks to obtain the 
embedding vector that could maintain the cell similarity. 
However, there is no algorithm for the joint embedding of 
proteomic data and pathway network data. Therefore, we 
developed a new tool for non-linear dimensionality reduc-
tion of proteomic data based on network embedding. 

Results and discussion 

Sample–protein network embedding preserving 
sample–sample relationship 

We first used the protein expression profile data set of sam-
ples from patients with early-stage hepatocellular carcinoma 
published by Jiang et al.[6] to evaluate the model. This data 
set contains the expression data of 9252 proteins in tumor 
and adjacent non-tumor tissues of 101 patients. Jiang divided 
the 101 samples into three subtypes: S-I, S-II and S-III. We 
first filtered out the proteins expressed in less than 25% of the 
samples (remaining 7207 proteins), and then selected the top 
25% proteins with the largest variance of expression value in 
the samples (1802 proteins). We then integrated the profile 
into a sample–protein network, containing 1903 nodes (101 
sample nodes, 1802 protein nodes) and 90 694 edges reflect-
ing the expression relationship between these nodes. The 
weight of the edges represented the expression level. 

We downloaded the human pathway data set from the 
IntPath database. Protein–protein interactions of 583 
human pathways were collected from KEGG,[7] 

WikiPathways,[8] BioCyc,[9] etc. We integrated the path-
ways into a protein–protein interaction network. The net-
work contained 3081 protein nodes and 15 281 edges that 
reflected the interaction between these nodes. 

The embedding vectors of 1903 entities were obtained by 
sample–protein network embedding, including the embed-
ding vectors of 101 samples and 1802 proteins. In order to 
intuitively observe the distribution of the corresponding 
embedding vectors of the samples in the embedding space, 
we showed them in three-dimensional space by principal 
components analysis (PCA). The samples in the respective 
subtypes of S-I, S-II and S-III tended to be distributed in the 
adjacent areas in the embedding space (Fig. 1a). In order to 
verify whether the embedded vector could reflect the simi-
larity of the original samples. We used consistent clustering 
to cluster the embedded vectors of samples. Each class in the 
clustering results was regarded as a subtype. After consistent 
clustering, samples could be grouped into three subtypes: 
N-I, N-II, N-III (Fig. 1b). Jiang found that the non-negative 
matrix factorization method (NMF) can effectively divide 
the early-stage HCC cohort into subtypes with different 
clinical outcomes, therefore we next compared our method 
based on embedded vectors with the NMF method based on 
expression matrices. The number of samples in the repeated 
part between each classification was counted (Table 1). 
Obviously, the distribution of samples in these three catego-
ries was highly consistent with the results of Jiang. The 
embedding vector learned by our model maintained the 
similarity between samples. 

Joint network embedding to discover new pan- 
cancer subtypes 

The embedding of the sample–protein network can only 
objectively reflect the distribution of the protein expression 
level of the sample. Therefore, we implemented the joint 
network embedding, combining the prior knowledge 
(protein–protein network) with the proteomic profiles. We 
used the pan-cancer proteomics profile,[10] an expression 
profile data set of 2000 proteins containing 532 cancer 
samples from five tissue sources to construct the 
sample–protein network. The sample–protein network con-
tained 2532 nodes (including 532 sample nodes and 2000 
protein nodes) and 804 760 edges reflecting the expression 
relationship between these nodes, and the weight of the 
edges was the expression level. In the same way, the path-
way data were integrated into a protein–protein network, 
which contained 3276 protein nodes, and 15 332 edges that 
reflect the interaction between these nodes. 

The above two networks were input into our joint embed-
ding model, after which the embedding vectors of 4922 
entities were obtained, including the embedding vectors of 
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532 samples, 2000 proteins and 2390 pathway proteins. 
In order to intuitively observe the distribution of the corre-
sponding embedding vectors of the samples in the embed-
ding space, they were represented in the three-dimensional 
space (Fig. 2a). As can be seen, samples from different tissue 
sources were mixed together in the space, which provides a 
good basis for distinguishing pan-cancer subtypes. 

We performed consensus clustering on low dimensional 
embedding vectors of 532 tumor samples trained with joint 
embedding. The samples were divided into ten clusters, and 
each cluster represented a pan-cancer subtype (Fig. 1b). 
Because prior knowledge (pathway information) was 
added in the process of network embedding, it was named 
as prior based clusters, and these pan-cancer subtypes were 
hereinafter referred to as P1, P2… P10 (Table 2). We found 
that each subtype contained cancer samples from different 
tissue sources, and different subtypes may also contain can-
cer samples from the same tissue source. Most subtypes were 

dominated by three or less tumor tissue sources. For exam-
ple, the vast majority of P1 are BRCA, COAD and UCEC 
samples (83%), P6 is dominated by CCRCC, COAD and OV 
(81%), P7 is dominated by BRCA, CCRCC and UCEC samples 
(76%) and P4 is dominated by BRCA (58%). P5 is the 
subtype with the largest sample size, and the samples from 
five tissue sources account for the same proportion in 
P5 (Fig. 3). 

Discovery of pan-cancer subtypes related 
proteins based on embedded vector similarity 

In the vector embedding training, we first assigned a ran-
dom embedding vector to each entity, including samples 
and proteins, and then modified the parameters of the 
embedding vector by optimizing the loss function. In fact, 
the optimization process is to make the embedding vectors 
closer between entities with larger association weight in 
each network, and vice versa (Fig. 4). Depending on this 
premise, the sample vectors and protein vectors are compa-
rable in the same space. 

First, the embedding vectors of all samples in each 
pan-cancer subtype were averaged into a central vector to 
represent the pan-cancer subtype. Spearman correlation 
analysis was carried out between all proteins and this cen-
tral vector, and proteins with the most significant correla-
tion were selected as the related proteins of this subtype. In 
this way, a total of 944 proteins related to these 10 subtypes 
were obtained (Fig. 5a). In order to explore the significance 
of the correlation between the proteins and subtypes, the 
average standardized expression values (mean s.d.) of these 

1.0

S-I(a) (b)

S-II

S-III

N-I

N-II

N-III

1.0

1.0
1.5

2.0

0.5

0.5

0.5

0.0

0.0

P
C

3 
(1

6.
8%

)

P
C

3 
(1

6.
8%

)

PC2 
(2

1.6
%

)

PC1 (44.8%)

0.0

–0.5

–0.5
–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0

–1.0

–1.0

1.0

1.0
1.5

2.0

0.5

0.5

0.0

PC2 
(2

1.6
%

)

PC1 (44.8%)

0.0
–0.5

–0.5

–1.0

–1.0

Fig. 1. Visualization of the distribution of samples vectors from network embedding. Each point in the graph represents a 
sample. (a) Samples of different subtypes from Jiang are labeled with different colours. (b) Samples of different subtypes 
embedded based on the sample–protein network are relabeled with different colours.   

Table 1. Comparison between two different subtyping.       

Subtype N-I N-II N-III Total   

S-I  32  4  0  36 

S-II  8  22  2  32 

S-III  5  0  28  33 

Total  45  26  30  101 

Note: S-I, S-II and S-III were subtypes obtained by Jiang based on expression 
profile, and N-I, N-II and N-III were subtypes embedded based on the 
sample–protein network. The numbers of samples shared by each subtype 
were shown in the cells.  
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proteins in pan-cancer subtype samples were extracted 
(Fig. 5b). Comparing Fig. 5a, b, it can be found that in 
most cases, the closer the protein is to the center of the 
subtype in the embedding space, the higher the protein’s 
average expression value in the samples of this subtype is, 
and vice versa. This shows that a large part of the similarity 
between the embedding vector of samples and proteins in 
embedding space comes from the expression value of pro-
teins in the proteomic profile. Of course, another part comes 
from the connection between pathway proteins and samples 
generated by protein–protein association in the pathway 
network. 

The GO entry enrichment analysis of the top 100 proteins 
most related to each subtype by David shows that the 
related proteins in P1 are mainly concentrated in extracel-
lular exosomes, which were related to calcium binding 

function. The related proteins in P2 are concentrated on 
the cell membrane and are related to protein binding, 
immune regulation and other functions. P3 related proteins 
are concentrated in the cytoplasm and are related to ATP 
binding, innate immune response and other functions. P4 
related proteins are mainly concentrated in cytoplasm and 
nucleoplasm, and are related to cell division. The related 
proteins in P5 are mainly concentrated on the cytoplasmic 
membrane and are related to cell apoptosis, transportation, 
cell adhesion and other functions. The related proteins in P6 
are mainly concentrated in the extracellular matrix, which is 
related to adhesive plaque. P7 related proteins are mainly 
concentrated in the extracellular space, which is related to 
cell adhesion. P8 and P9 related proteins are related to 
extracellular exosomes, and P9 related proteins are enriched 
into integrin mediated signaling pathways; P10 related 
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Fig. 2. Visualization of the distribution of pan-cancer sample vectors from the joint network embedding. Each point in the graph 
represents a sample. (a) Cancer samples from different tissues are labeled with different colours. (b) The samples of different pan- 
cancer subtypes embedded based on two networks are marked with different colours.   

Table 2. The composition of samples in each pan-cancer subtype.              

Tumor tissue 
origin 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total   

BRCA  17  8  6  18  23  5  24  13  6  5  125 

CCRCC  2  4  17  1  29  15  22  7  4  9  110 

COAD  10  2  8  3  32  24  7  6  3  2  97 

OV  6  1  8  5  29  20  13  8  8  2  100 

UCEC  11  9  6  4  28  9  17  6  8  2  100 

Total  46  24  45  31  141  73  83  40  29  20  532 

Note: BRCA, CCRCC, COAD, OV and UCEC are the tissue sources of tumor samples. P1, P2… P10 are pan-cancer subtypes embedded based on knowledge 
map. The numbers of samples shared by each subtype were shown in th cells.  

D. Sun et al.                                                                                                                           Australian Journal of Chemistry 

440 



proteins are mainly enriched in the components of the 
membrane. Using DisGeNET (https://www.disgenet.org/ 
home/) analysis found that 19 of the top 30 proteins associ-
ated with these 10 subtypes have been reported to be asso-
ciated with these five tissue-derived tumors. For example, 
the protein most related to P4 is KIF2C, which has been 
reported to be significantly related to the invasive charac-
teristics of breast cancer,[11] and AURKA has also been 
reported to promote the proliferation and survival of breast 
cancer cells.[12] The other 11 are new genes that have not 
been reported to be related to these five cancers, such as the 
protein C6ORF132 most related to P5, which has not been 
reported to be related to these five cancers before, and it is 
not significantly related to any subtype by traditional pro-
tein expression profile difference analysis. At present, there 
are few studies on the function of C6ORF132 protein, but 
some studies have shown that the high expression of 
C6ORF132 is detrimental to the prognosis of pancreatic 
cancer.[13] 

Discovery of pan-cancer subtype related 
pathways based on embedded vector similarity 

Using a similar principle, the embedding vectors of all pro-
teins in each pathway were averaged into a central vector to 
represent the pathway. Then Spearman correlation analysis 
was carried out between the center vector of each subtype 
and each pathway. The pathways with the most significant 
correlation (P < 0.05) were selected as the correlation path-
way of this subtype, so a total of 143 pathways related to 
these 10 subtypes were obtained. Fig. 6a visualizes the 

center vectors of pan-cancer subtypes and the first three 
pathways related to each subtype in three dimensions. 
In order to explore the significance of the correlation 
between pan-cancer subtype related pathways and subtypes, 
we calculated the average standardized expression value 
(mean s.d.) of the proteins in each pathway in each pan- 
cancer subtype (Fig. 6b). Comparing Fig. 6a, b, it is also 
found that the closer the center of the pathway is to the 
center of the subtype in embedding space, the higher the 
average expression value in the samples of this subtype is, 
and vice versa. This is because we have fully considered the 
expression relationship in the expression profile when 
embedding the networks, and some related pathways whose 
average expression values are not significantly up-regulated 
relative to other subtypes will also be found by our model, 
such as the Bile secretion pathway significantly related to P8. 

After analyzing the pathways significantly related to each 
subtype, we described these subtypes as follows: P2 is 
mainly related to the activation of p53 signaling pathway 
to promote the start of cell cycle. Previously, it was reported 
that TP53 mutation is a driving mutation in some samples of 
breast cancer and endometrial cancer,[14] indicating that the 
samples in P2 may have the same characteristics. P3 is 
mainly related to nucleotide synthesis and metabolism. 
Endometrial cancer samples account for the largest propor-
tion of P3 (38%), and increased nucleotide synthesis is 
conducive to the proliferation of endometrial cancer 
cells.[15] P4 is a subtype related to immune diseases, and 
the immune system plays an important role in inhibiting 
tumor development,[16] so immune system defects may be 
characteristic of samples in P4. The functional characteris-
tics of P5 and P8 are mainly reflected in metabolism and 
transportation. The activation of oncogenes and the loss of 
tumor suppressors promote the metabolism of tumor cells, 
thereby improving the intake of nutrients, thus providing 
energy and material basis for the growth and proliferation of 
tumor cells.[17] The representative pathway related to P6 
and P7 is matrix metalloproteinase. Due to its large up- 
regulation in malignant tumors and its unique ability to 
degrade extracellular matrix components, matrix metallo-
proteinase is considered to be an ideal target for tumor 
therapy.[18] Meanwhile P10 is related to cholesterol synthe-
sis and transportation. Some tumor cells have a high 
demand for cholesterol. Blocking the synthesis and uptake 
of cholesterol has an inhibitory effect on the formation and 
growth of tumors.[19] P10 may be very sensitive to the 
treatment strategy for cell cholesterol homeostasis.[20] 

Experimental 

Workflow 

The basic idea of the model was to combine the proteomic 
data with the prior knowledge in pathway network, to learn 
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Fig. 3. Relationship between tumor tissue origin and pan-cancer 
subtyping based on joint network embedding. Sankey diagram (from 
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the right.  
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the low dimensional vector representation of samples and 
proteins. Samples with similar protein expression patterns 
(converged with pathway networks) should be mapped to 
adjacent regions in the embedding space. The method 
included two steps: network construction and network 
embedding. First, we converted the profile matrix into the 
form of triples, and then integrated them into the 

sample–protein network. Next, we downloaded human 
pathway data from IntPath,[21] a public pathway data set 
integrated by experts, and integrated them into a 
protein–protein network in pathways. The above two net-
works were used as input data and submitted to the training 
program developed for joint embedded learning. 
Theoretically, the purpose of embedding learning is to 
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make the similarity of embedding vectors in the embedding 
space consistent with that of corresponding entities in the 
network. For this purpose, we built a workflow to imple-
ment embedding training, and output the embedding result 
vector of each entity for downstream analysis (Fig. 7). 

Integration of sample protein network and 
pathway protein network 

Sample–protein network: given an expression data set of S 
samples and P proteins, for each expression value vij in the 
set, the corresponding sample and protein was denoted by si 
and mi. We used a binary (si, mj) to represent them, and vij is 

the weight of the binary. In this way, a sample–protein 
network Esm was constructed by using the weighted binary 
extracted from the expression profile: if the corresponding 
expression value |vij| > 0, an edge with weight of vij was 
added between sample si and protein mj. 

Protein–protein network: given a priori pathway net-
work, if protein pi and protein mj were directly connected 
in the network, we used a binary (pi, mj) to represent them. 
In this way, we used the binary extracted from the network 
to construct a pathway protein–protein network Epm: If the 
protein pi and protein mj were directly connected, an edge 
would be added with a weight of one between the protein 
pi and protein mj. 
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Fig. 6. Pan-cancer subtypes and their associated 
pathways. (a) The distribution of pan-cancer subtype 
centroids and most relevant pathway centroids was 
visualized in three-dimensional space with three 
coordinate axes representing three-dimensional 
principal component values, respectively. The pan- 
cancer subtype centroid vectors are represented by 
triangles. The pathway centroid vectors are repre-
sented by the three-dimensional principal compo-
nent mean of all protein embedded vectors in the 
pathway, represented by a circle. Different entities 
are distinguished by colour. (b) The heatmap repre-
sents the mean expression value (mean s.d.) in each 
subtype for the 23 most relevant pathways across 
the 10 pan-cancer subtypes.   
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Establishment of loss function 

Let S be the number of samples, M the number of proteins 
and P the number of proteins not included in the 
sample–protein network (pathway protein). And s was a 
sample, m was a protein and p was a pathway protein. 
The index of samples, proteins, pathway proteins were 
i = 1, 2, …, S, j = 1, 2, …, M and j* = 1, 2, …, P. The 
low dimensional embedding vector of si, mj, pj* were ai, ej , 
rj . vij was the expression value of protein mj in sample 
si in omics data, and wj*j was the weight of pathway 
protein pj* and protein mj in the priori network. And 
a e r R D, , ,i j j

D was the dimension of embedded vector. 
We used the following loss function (Eqn 1) to evaluate 

the embedding effect of the sample protein network:   
l
moo
noo

|
}oo
~oo

O v e a

E e a

= log ( )

+ [ log ( )]

s m E ij j
T

i

n P n
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1 ( , )i j sm
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(1)  

We used the following loss function (Eqn 2) to evaluate the 
embedding effect of the pathway protein network:   

l
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where, x x( ) = 1/(1 + exp( )) was the sigmoid function, 
P v( ) ,s n i

S in( ) =1
0.75 was the weight of priori knowledge 

in model training, usually set to one. 
When the embedding vectors ai and ej corresponding to 

a pair of entities si and mj in Esm were close to each other in 
the embedding space, then their contribution to O1 
decreased and vice versa. If the embedding vectors of all 
entity pairs in Esm conform to this distribution, O1 should be 
the minimum. Similarly, the design of O2 was also based on 
this purpose. Therefore, in the process of joint embedding, 
the following function (Eqn 3) should be optimized: 

O O O= +joint 1 2 (3)  

Ojoint was the loss function of our model theory. 

Using negative sampling technique to simplify 
loss function 

Negative samples were defined as pairs of entities that do 
not exist in the network. In practice, we found that the 
direct optimization of the objective function Ojoint had a 
high calculation cost, because when calculating the loss 
value of each pair of positive samples ai, ej we also needed 
to calculate all the negative samples with ai as the head 
entity. However, negative sampling[22] helped simplify the 
original loss function to the proxy objective function of 
binary classification, which had the same parameters but 
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low computational complexity. Specifically, Eqns 1, 2 can be 
rewritten as Eqns 4, 5: 
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0.75, K was the number 
of negative samples. 
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where, 
i
k
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y
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0.75

, K was the num-

ber of negative samples. 

Improving training efficiency by using redesigned 
edge sampling technique 

In the process of model training, we randomly selected an 
edge (si, mj) from the sample protein network, and the 
corresponding K negative edges, and their embedded vec-
tors were used to calculate the losses. The stochastic gradi-
ent descent (SGD) method was then used to calculate the 
gradient first, and the gradient was multiplied by the weight 
of the edge to correct the vector parameters. But such a 
design would lead to a ‘gradient explosion and vanishing’ 
problem. To overcome this problem, the edge sampling 
technique proposed by Tang[23] was adopted. Its basic 
idea was to divide the edge with weight into several edges 
with weight of one, and then used the protein expression 
value in the sample as the probability to sample. However, 
this method had two shortcomings: first, some omics data, 
such as pan-cancer omics data that had been standardized 
many times, contained a large number of negative values; 
Secondly, this method tended to train the protein with high 
absolute expression value, but did not pay attention to the 
protein whose expression was significantly inhibited, which 
was not comprehensive for the study of protein expression 
changes in samples. Therefore, we redesigned the edge sam-
pling technique: If the weight of edge (si, mj) was vij, we 
transformed this edge into |vij| edges with the weight of v

v
ij

ij
.  

Eqns 4, 5 were redesigned to give Eqns 6, 7: 
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where, i j P P v n P P v( , )~ , , , ( )i j i j ij k s n s n i
S in( , ) ( , ) ( ) ( ) =1

0.75, 
K was the number of negative samples, T was the maximum 
training epochs. 
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, 

K was the number of negative samples, T was the maximum 
training times. 

In this way, the loss function can be rewritten as Eqn 8: 

O O O= +joint 1 2 (8)  

Model training steps 

In practical operation, we trained the model by minimizing 
the loss function to Ojoint

′ according to the following steps: 

Algorithm 1 Model training steps 
Input: Esm, Epm 
System parameter: total training epochs T, number of 

negative samples K, embedded dimension D, priori knowl-
edge weight 

Output: low dimensional embedding vectors of all enti-
ties in Esm, Epm 

1: function TRAINING(Esm, Epm) 
2: From the uniform distribution of [−1,1], initialize a 

D-vector representation for all entities in Esm and Epm 
randomly 

3: while iter < T do 
4: One edge is randomly selected from Esm, and K nega-

tive edges are randomly selected from Ps(n) to update the 
sample embedding vector and protein embedding vector 

5: One edge is randomly selected from Epm, and K nega-
tive edges are randomly selected from 

noise distribution Pp(n) to update the pathway protein 
embedding vector and protein embedding vector 

6: end while 
7: Output all D-dimensional vectors 
8: end function 

Sample–protein network embedding 

In order to verify the effectiveness of our method, the 
sample–protein network was first embedded without adding 
priori knowledge (pathway network). We set the weight 
parameters of the pathway protein–protein network β Set 
to zero. The sample–protein network was input into the 
model for 15-dimensional vector embedding, training 1 mil-
lion epochs with five negative samples per epoch. In order to 
intuitively observe the distribution of the corresponding 
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embedding vectors of the samples in the embedding space, 
we showed them in three-dimensional space by PCA. 

Joint network embedding 

We carried out the joint network embedding so that the 
embedding vector of the sample doesnt just reflect the 
protein expression level. The priori knowledge (pathway 
network) was added to the model and jointly embedded 
with the sample–protein network. The weight parameters 
of the pathway protein–protein network β was set to one. 
The embedding dimension was set to 15, the number of 
negative samples was five, and the training epoch 1 million. 

Conclusions 

We established a learning method for representation of 
omics data based on the embedding of pathway networks, 
which can represent the entities in omics data and pathway 
networks as a low dimensional embedding vector. The dis-
tribution of the embedding vector in space is able to main-
tain the similarity between entities, which achieves a 
seamless bridging of omics data and prior knowledge. 

Using our method to learn the pan-cancer protein expres-
sion profiles derived from five tissues, we obtained ten pan- 
cancer subtypes based on the embedded vectors and found 
944 proteins and 143 pathways significantly associated with 
the pan-cancer subtypes, such as ATP1B1, BDH1, MMPs and 
ABC transporters. 

Biological networks are expected to play an important 
role in the field of biomedical research, but their potential 
remains to be explored, and there are still some issues to be 
considered. The future development of our network embed-
ding methods may incorporate the following aspects: 

The entities and relationship types in the protein–protein 
network are relatively single, our method was applied only 
to tumor data. In future work, we will further optimize the 
methodology to enable its extended application to other 
research areas including fibrosis and to more heterogeneous 
networks. 

The basic idea of our paper is to combine the proteomic 
data with the prior knowledge in pathway networks to 
discover biological insights. The reason why we focus on 
proteomics is that proteins play direct roles in pathways, 
and the integration with pathway data is more reasonable in 
biology. The Cancer Genomics Atlas (TCGA) contains prote-
omic data derived from the reverse phase protein array, 
which contains limited proteins and there is only a very 
small overlap between the genes corresponding to proteins 
in the TCGA and the genes in the biological pathway. 
Therefore, we did not try our method in the TCGA datasets. 
Of course, we will improve the method and apply it to the 
proteomic datasets of TCGA in future work. In addition, 
multi-omics data has inconsistencies and up- and 

downstream regulatory relationships between different 
omics molecules may be implied in the biological networks. 
This provides an idea of intelligent integration of multi- 
omics data, but at present, there is much to break through 
in this area. 

Supplementary material 

Trained embedding matrices and program codes were avail-
able and freely accessible online in https://github.com/ 
1300060609/PPRL. Supplementary material is available 
online. 
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