THE DIHEDRAL ANGLES OF CYCLOHEXANE*

By G. A. Bottomet \dagger and P. R. Jefferies \dagger

Some 10 years ago Hazebroek and Oosterhoff (1951) thoroughly analysed the complex geometrical forms which the cyclohexane ring can assume, the mechanical rigidity of the chair form and the contrasting flexibility of the boat form. One single variable suffices to define completely the geometry of the flexible form ; this variable may be any one dihedral angle between three successive carbon-carbon bonds, any one 1-4 carbon-carbon distance, or, as in Hazebroek and Oosterhoff's case, a mathematical variable selected to suit their purpose of describing in a symmetrical way the rotation between staggered and eclipsed conformations. Perhaps because of its formal nature, this important paper has been frequently overlooked, but with the growing interest in the family of cyclohexane conformations which include the boat and the symmetrical skew as extreme cases, it seems important to present material implicit in Hazebroek and Oosterhoff's paper (though reached differently here) with numerical emphasis on angles and coordinates. Further relevant material is presented in papers by Brodetsky (1929) and Henriquez (1934).

Procedure

Using Figure 1, consider two carbon-carbon bonds placed in the $x y$-plane, with the central atom A at the origin, and with F and B symmetrically disposed about the vertical $z y$-plane. Atom O is initially placed in the $x y$-plane, but is free to rotate appropriately about $A B$ produced, and its location is conveniently given by the dihedral angle R between the planes $F A B$ and $A B C$. The carboncarbon distance is our unit length. Another atom E is introduced, with z positive, but necessarily placed so that A, E, and C are at the corners of an equilateral triangle of side length $1 \cdot 6330$ if tetrahedral geometry and equal bond lengths are to be preserved. The position of this fifth atom is completely determined by the original location of atom C. By trial and error methods we have determined the coordinates of E for all possible positions of C, and computed the dihedral angle S between the planes $E F A$ and $F A B$. Furthermore, the original choice for C, and its implied position of E, defines the position of D (at the corners of the equilateral triangle $F B D$, side $1 \cdot 6330$; unit distance from both E and C, and having an x coordinate $0 \cdot 0000$) and fixes the third dihedral angle T between the planes $A B C$ and $B C D$. There are three further dihedral angles about the bonds $C D, D E$, and $E F$, but these are identical with the set S, R, T already discussed.

[^0]Results
The dihedral angles about successive bonds, presented in Table 1, change interestingly with the three-dimensional movement of the molecule. We begin at $R=0^{\circ}, T=60^{\circ}, S=-60^{\circ}$ (the negative sign indicates opposite rotation sense) with the molecule in the $F-C$ boat form with the atoms F, A, B, C in the reference plane. As R increases, O rises above the $x y$-plane, and so does $E,-S$ increasing slowly. This action continues until $R=33 \cdot 10^{\circ}$ and $-S$ has reached its maximum value of 70.67°. The molecule is now a symmetrical skew with $B-E$ the twofold axis, B, D, E, F coplanar. As R further increases towards $60^{\circ}, E$ descends slowly and at $R=60^{\circ},-S$ has fallen to 60° : the model is a second boat, axis $A D$. All six possible boats, which alternate with six symmetrical skew forms, are

Fig. 1
generated by moving D both above and below the $x y$-plane, R, S, and T undergoing cyclic permutation but not assuming new values. The intervals have been arranged to facilitate graphical representation, and the number of significant figures is adjusted to the precision of the entries. The coordinates of D, the most laborious to calculate, are presented : those of A, B, and F are respectively ($0.0000,0.0000,0.0000$) ($+0.8163,0.5774,0.0000$), and ($-0.8163,0.5774$, $0 \cdot 0000$), whilst C and E can be recovered from

$$
\begin{aligned}
& x \text { (positive for } C=1 \cdot 0885-(0.5443 \cos \text { dihedral), } \\
&\text { negative for } E)=1 \text { (positive) } \\
& z \text { (positive) }=0.7698+(0.7698 \text { cos dihedral), } \\
& z=0.9428 \text { sin dihedral. }
\end{aligned}
$$

The calculations have been carried out with four-figure tables so some accumulation of error is inevitable, but it may be safely assumed that the coordinate values permit the calculation of distances to better than 1 in 1000, which comfortably exceeds the usual bond-length accuracy.

It is sometimes convenient to express the movements in terms of the varying distances between opposite carbon atoms. Table 2 shows how any cyclohexane 1-4 distance varies with the associated dihedral angle.

Table 1
RELATED Values of R, T, and S

Dihedral Angles			Coordinates of D		
R	T	-S	x	y	z
$0 \cdot 00^{\circ}$	$60 \cdot 0^{\circ}$	$60 \cdot 00^{\circ}$	0.0000	$1 \cdot 7319$	0.8166
1.6		61.00	(carbon-carbon bond, unit length)		
$3 \cdot 3$		$62 \cdot 00$			
$5 \cdot 00$	56.8	62.93	$0 \cdot 0000$	$1 \cdot 6592$	0.9108
$5 \cdot 2$		$63 \cdot 00$			
$7 \cdot 2$		$64 \cdot 00$			
$9 \cdot 4$		$65 \cdot 00$			
$10 \cdot 00$	$53 \cdot 2$	$65 \cdot 28$	$0 \cdot 0000$	$1 \cdot 5807$	0.9966
$11 \cdot 7$		$66 \cdot 00$			
$14 \cdot 3$		67.00			
$15 \cdot 00$	49.6	67.27	$0 \cdot 0000$	$1 \cdot 5014$	$1 \cdot 0705$
$17 \cdot 2$		$68 \cdot 00$			
$20 \cdot 00$	$45 \cdot 4$	68.83	$0 \cdot 0000$	$1 \cdot 4199$	$1 \cdot 1358$
20.7		$69 \cdot 00$			
$25 \cdot 00$	$40 \cdot 9$	69.95	$0 \cdot 0000$	1-3389	1-1917
$25 \cdot 4$		$70 \cdot 00$			
$29 \cdot 3$		$70 \cdot 50$			
$30 \cdot 00$	36-2	70. 55	$0 \cdot 0000$	1-2606	1-2382
$33 \cdot 10$	$33 \cdot 1$	$70 \cdot 67$	$0 \cdot 0000$	$1 \cdot 2138$	$1 \cdot 2630$
$35 \cdot 00$	$31 \cdot 2$	$70 \cdot 62$	$0 \cdot 0000$	1-1860	$1 \cdot 2765$
$37 \cdot 00$	$26 \cdot 8$	$70 \cdot 50$	$0 \cdot 0000$	1.1582	1-2894
$40 \cdot 00$	$26 \cdot 0$	$70 \cdot 13$	$0 \cdot 0000$	1-1184	1-3066
$40 \cdot 7$		$70 \cdot 00$			
$44 \cdot 8$		$69 \cdot 00$			
$45 \cdot 00$	$20 \cdot 4$	$68 \cdot 93$	$0 \cdot 0000$	$1 \cdot 0585$	$1 \cdot 3293$
$47 \cdot 7$		$68 \cdot 00$			
$50 \cdot 00$	$14 \cdot 2$	$67 \cdot 00$	$0 \cdot 0000$	$1 \cdot 0102$	$1 \cdot 3463$
$52 \cdot 00$		$66 \cdot 00$			
$53 \cdot 8$		$65 \cdot 00$			
$55 \cdot 00$	$8 \cdot 0$	$64 \cdot 23$	$0 \cdot 0000$	0.9757	$1 \cdot 3570$
55.3		64.00			
$56 \cdot 8$		$63 \cdot 00$			
$58 \cdot 00$		$62 \cdot 00$			
$59 \cdot 1$		$61 \cdot 00$			
$60 \cdot 00$	$0 \cdot 0$	$60 \cdot 00$	$0 \cdot 0000$	$0 \cdot 9624$	1-3607

The symmetrical skew cyclohexane with neither bond length nor bond angle distortion, alternatively referred to as the stretched conformation or the "halfrotated" form, is shown by the numerical analysis to have dihedral angles of $33 \cdot 1,33 \cdot 1$, and $70 \cdot 67^{\circ}$, and not the $30,30,60^{\circ}$ values quoted, for instance, by

Klyne and Prelog (1960). The former values are obtained also by straightforward operations on Hazebroek and Oosterhoff's (1951) equations (9), (8), and (12), and can be verified by accurate models.

Table 2
variation cyclohexane 1-4 distances with dibedral angle

Dihedral Angle	Associated Distance (Carbon-carbon bond, unit length)	Dihedral Angle	Associated Distance (Carbon-carbon bond, unit length)	
0°	1.6667 Min. Boat	40°	1.7868	
5	1.6684	45	1.8158	
10	1.6745	50	1.8470	
15	1.6845	55	1.8801	
20	1.6980	60	1.9147	Boat
$\mathbf{2 5}$	1.7156	65	1.9502	
$\mathbf{3 0}$	1.7365	70	1.9856	
$\mathbf{3 3 . 1}$	1.7512	Skew	70.50	1.9911
$\mathbf{3 5}$	1.7601	70.67	1.9914 Max. Skew	

References

Brodetsey, S. (1929),-Proc. Leeds phil. lit. Soc. 1: 370.
Hazebroek, P., and Oosterhoff, L. J. (1951).-Disc. Faraday Soc. 10 : 87.
Henriquez, P. C. (1934).—Proc. Acad. Sci. Amst. 37 : 532.
Klyne, W., and Prelog, V. (1960).-Experientia 16 : 521.

[^0]: * Manuscript received July 5, 1961.
 \dagger Department of Chemistry, University of Western Australia, Nedlands, W.A.

