Oil of *E. kitsoniana*

Isolation of Essential Oil.—Leaves and terminal branchlets (9.2 kg) collected at Foster, Vic., on steam distillation yielded 206 g (2.1%) of oil having $d_{45}^0 0.9118; n_2^0 1.4706; \alpha_0 +2.2^\circ$; acid number 2; ester number 3.5, after acetylation 36.5. Foliage distilled from 10 trees of an open-pollinated progeny of 50 trees raised from the Foster trees grown at Castle Hill, N.S.W., yielded an oil having $d_{45}^0 0.9150; n_2^0 1.4715; \alpha_0 +1.04^\circ$, apparent cineole content 56% (o-cresol method); soluble in 2 vols. 70% w/w ethanol.

Identification of Constituents.—The crude oil from the Foster material was fractionated through a Widmer-type column under 10 mm of pressure and the following compounds identified in the fractions obtained:

(i) (+)-α-Pinene.—A fraction (b.p. 36-41°/10 mm; $d_{45}^0 0.8612; n_2^0 1.4670; \alpha_0 +32^\circ$) on treatment with nitrosyl chloride yielded the nitrosochloride of (+)-α-pinene, m.p. and mixed m.p. 107°. The infrared spectrum of a gas chromatography fraction was identical with that of α-pinene.

(ii) (+)-Limonene.—A fraction (b.p. 52-56°/10 mm; $d_{45}^0 0.8602; n_2^0 1.4766; \alpha_0 +8^\circ$) on treatment with bromine yielded the tetrabromide of (+)-limonene, m.p. and mixed m.p. 124-5°.

(iii) 1,8-Cineole.—The lower boiling fractions (b.p. 60°/10 mm) were extracted with 50% aqueous resorcinol solution to yield cineole which was identified by the preparation of the o-cresol addition compound, m.p. and mixed m.p. 56°.

(iv) Aromadendrene.—A fraction (b.p. 110-124°/10 mm; $d_{45}^0 0.9344; n_2^0 1.4947; \alpha_0 -1.3^\circ$) on treatment with nitrosyl chloride yielded a nitrosochloride, m.p. 124°, which when treated with piperidine yielded a nitrotpiperidine, m.p. 132-133° (Found: C, 74.8; H, 10.7; O, 8.7. C_{28}H_{42}N_{2}O requires C, 75.2; H, 10.7; O, 8.8%). The product was identified by infrared analysis and mixed melting point determination with that from aromadendrene.

(v) Sesquiterpene Alcohols.—A fraction (b.p. 101-103°/3 mm; $d_{45}^0 0.9782; n_2^0 1.5009; \alpha_0 -18.6^\circ$) showed by its infrared spectrum the presence of hydroxyl. Dehydration with 98% formic acid gave a product having $d_{45}^0 0.9183; n_2^0 1.5032; \alpha_0 -4.8^\circ$. Gas chromatography resolved the fraction into two major components, probably sesquiterpene alcohols, which were not further investigated.

Acknowledgments

The authors wish to express their thanks to the Forests Commission of Victoria for help in the collection of the experimental material, to Mr J. H. Willis of the National Herbarium of Victoria for valuable botanical information, and to Mr A Hughes and Mr H. Keyzer for laboratory assistance in this work.

Corrigenda

Volume 19, Number 5

Page 805, third paragraph, line 5: for p_{1}/R read p_{2}/R.

Page 808, second last line: for Equation (9) read Equation (10).

Volume 19, Number 7

Page 1136, last line; and page 1139, heading to column 5 of Table 1: Expressions in parentheses should read $(\frac{2-\pi}{\pi})$.