# A REDETERMINATION OF THE SIGMA CONSTANT FOR THE PYRIDINE AZA GROUP

## By A. D. CAMPBELL,\* S. Y. CHOOI,\* L. W. DEADY,† and R. A. SHANKS†

[Manuscript received September 18, 1969]

A number of determinations of Hammett  $\sigma$  values<sup>1</sup> for the ring nitrogen in 2-, 3-, and 4-substituted pyridines have been reported.<sup>2</sup> For this purpose the nitrogen is treated as a ring substituent in a benzene system. The  $\sigma$  values, especially those for the 2-position (susceptible to influences such as intramolecular hydrogen bonding with an adjacent carboxyl probe), have been found to vary widely with the type of reaction.

One of the common methods for evaluating  $\sigma$  values is from the alkaline hydrolysis of substituted alkyl benzoates. Three reports<sup>3-5</sup> of the alkaline hydrolysis of the ethyl pyridinecarboxylates exist. Kindler<sup>3</sup> reported a series of results on the alkaline hydrolysis of ethyl pyridinecarboxylates and ethyl benzoates in  $87 \cdot 83\%$  (w/w) EtOH/H<sub>2</sub>O at 30°. From these, Jaffe<sup>6</sup> calculated ( $\rho = 2 \cdot 43$ ,  $-\log k_0 = 3 \cdot 05$ )  $\sigma$  values for the nitrogen as  $2_{\rm N} = 0.81$ ,  $3_{\rm N} = 0.62$ , and  $4_{\rm N} = 0.93$ . Two papers by Imoto and co-workers<sup>4</sup> include the alkaline hydrolysis of ethyl picolinate and ethyl nicotinate in 85 % (w/w) EtOH/H<sub>2</sub>O at 25°. By using Jaffe's figures for these conditions ( $\rho = 2 \cdot 54$ ,  $-\log k_0 = 3 \cdot 22$ ), these rates give  $\sigma$  values of  $2_{\rm N} = 0.77$  and  $3_{\rm N} = 0.64$ . The third study<sup>5</sup> was made in 70% (w/w) EtOH/H<sub>2</sub>O but, because of lack of information on the hydrolysis of ethyl benzoates under these conditions, no  $\sigma$  determination was made.

During an investigation of substituent effects in the pyridine system, we have measured (Table 1) the alkaline hydrolysis of a series of substituted methyl benzoates and the methyl pyridinecarboxylates in 85% (weight) MeOH/H<sub>2</sub>O at 25° to establish the substituent constants required for the rate correlation under these previously unreported conditions. Analysis of  $-\log k_2$  against  $\sigma^7$  for the methyl benzoates indicated in the table (r = 0.999) gave  $\rho = 2.26$  (cf. 2.54 for ethyl benzoates),  $-\log k_0 = 3.71$ , and  $\sigma$  values for the aza group of  $2_N = 0.75$ ,  $3_N = 0.65$ , and

\* Chemistry Department, University of Otago, Dunedin, New Zealand.

† Division of Organic Chemistry, La Trobe University, Bundoora, Vic. 3083.

- <sup>1</sup> Hammett, L. P., "Physical Organic Chemistry." (McGraw-Hill: New York 1940.)
- <sup>2</sup> Jaffe, H. H., and Jones, H. L., Adv. heterocyc. Chem., 1964, 3, 209; Blanch, J. H., J. chem. Soc. (B), 1966, 937.

<sup>3</sup> Kindler, K., Liebigs Ann., 1926, 450, 1; Ber. dt. chem. Ges., 1936, 69, 2792.

<sup>4</sup> Otsuji, Y., Koda, Y., Kubo, M., Furukawa, M., and Imoto, E., Nippon Kagaku Zasshi, 1959, 80, 1293; Ueno, Y., and Imoto, E., Nippon Kagaku Zasshi, 1967, 88, 1210.

<sup>5</sup> Faulkner, P. R., and Harrison, D., J. chem. Soc., 1960, 1171.

<sup>6</sup> Jaffe, H. H., Chem. Rev., 1953, 53, 191.

<sup>7</sup> McDaniel, D. H., and Brown, H. C., J. org. Chem., 1958, 23, 420.

Aust. J. Chem., 1970, 23, 203-4

 $4_N = 0.96$ . These are in fair to excellent agreement with the values above and this type of reaction of pyridyl compounds should therefore be correlated with results for benzene derivatives by use of these  $\sigma$  values for the ring nitrogen.

|             |                   |                         |                       |                | TURDING               |                                    |              |                            |                      |              |
|-------------|-------------------|-------------------------|-----------------------|----------------|-----------------------|------------------------------------|--------------|----------------------------|----------------------|--------------|
| RATE CON    | ISTANTS $k_2$     | (l. mole                | -1 sec-2              | I) FOR         | ALKALINE              | HYDRO                              | LYSES I      | и 85% М                    | eOH/H <sub>2</sub> O | AT 25°       |
|             |                   |                         |                       | Met            | hyl Benzo             | ates                               |              |                            |                      |              |
| Subst.      | p-NO <sub>2</sub> | $m \cdot \mathrm{NO}_2$ | $m	ext{-}\mathbf{Br}$ | $p	ext{-Br}$   | $\dot{m}	ext{-MeO^a}$ | $\mathbf{H}$                       | $m	ext{-Me}$ | $m \cdot \mathrm{NMe}_2^a$ | p-Me                 | p-MeO        |
| $-\log k_2$ | $1 \cdot 94$      | $2 \cdot 11$            | $2 \cdot 86$          | $3 \cdot 16$   | 3.63                  | $3 \cdot 72$                       | $3 \cdot 89$ | $4 \cdot 01$               | $4 \cdot 03$         | $4 \cdot 35$ |
|             |                   |                         | Me                    | $\phi$ thyl Py | yridinecar            | boxylate                           | s            |                            |                      |              |
|             |                   | Position                |                       | 2-CO2          | Me <sup>a</sup> 3-    | CO <sub>2</sub> Me <sup>a</sup> 4- |              | O₂Meª                      |                      |              |
|             |                   | $-\log k_2$             |                       | $2 \cdot 02$   |                       | $2 \cdot 25$                       | 1.53         |                            |                      |              |

TABLE 1

<sup>a</sup> Not used in the calculation of  $\rho$  and  $\log k_0$ .

In addition, it was found that  $\sigma$  values of +0.04 and -0.15 gave good correlation of the  $-\log k_2$  values from methyl *m*-methoxybenzoate and methyl *m*-dimethylaminobenzoate respectively. The methoxy value is that found by Taft<sup>8</sup> from the methanolysis of substituted *l*-menthyl benzoates. It seems that this value rather than  $0.115^{7}$  is applicable to reactions in aqueous alcohols and is close to the  $\sigma_{m}^{0}$ value of 0.06 derived by Taft<sup>9</sup> for such reactions. The value of -0.15 for the mdimethylamino substituent is that recently re-evaluated<sup>10</sup> for this group.

### Experimental

#### Esters

Methyl *m*-dimethylaminobenzoate was prepared by reductive methylation of methyl m-nitrobenzoate.<sup>11</sup> The other esters were obtained commercially or made from the acids. All esters were checked for purity by g.l.c. before use.

#### Kinetics

The method of Elderfield and Siegel<sup>12</sup> was followed and the concentrations used were c.  $1 \times 10^{-2}$  (ester) and  $1.5 \times 10^{-2}$  (alkali, from sodium hydroxide). The second-order rate constants quoted were obtained graphically and reproducibility was within 2%. Each rate constant is the average of at least two runs.

#### Acknowledgments

We thank the Mellor Research Fund for a grant (to S.Y.C.) and La Trobe University for the award of a scholarship (to R.A.S.).

- <sup>8</sup> Taft, R. W., Newman, M. S., and Verhock, F. H., J. Am. chem. Soc., 1950, 72, 6511.
- <sup>9</sup> Taft, R. W., J. phys. Chem., 1960, 64, 1805.
- <sup>10</sup> Howard, J. C., and Lewis, J. P., J. org. Chem., 1966, 31, 2005.
- <sup>11</sup> Pearson, D. E., and Bruton, J. D., J. Am. chem. Soc., 1951, 73, 864.
- <sup>12</sup> Elderfield, R. C., and Siegel, M., J. Am. chem. Soc., 1951, 73, 5622.