\(N_\beta \)-METHYLTETRAHYDROHARMAN FROM SPATHIOSTEMON JAVENSIS (EUPHORBIACEAE)

By S. R. JOHNS,* J. A. LAMBERTON,* and A. A. SIOMIUS*

[Manuscript received September 15, 1969]

Spathiostemon javensis Bl. (synonym: Homonoia javensis (Bl.) Muell. Arg.) is a New Guinea rain-forest tree of the family Euphorbiaceae. The leaves and bark of a small tree (herbarium voucher number TGH 10766) gave positive field tests for alkaloids, and extraction of dried leaves in the laboratory afforded c. 0·2% of crude alkaloids. Examination by thin-layer chromatography indicated the presence of only one major constituent, and chromatography on a column of alumina gave a high yield of \(N_\beta \)-methyltetrahydroharman, identical with the alkaloid previously isolated from *Acacia compleanata*.\(^1\)

Experimental

Leaves were collected from a tree (10 ft high, 2 in. diameter) growing in rain forest bordering the Uberi Road at Ower's Corner, Western Section, Papua (lat. 9° 22' S., long. 147° 28' E.).

The dried leaves (1·7 kg) were pulverized in a hammer mill and extracted by continuous percolation with methanol. The crude alkaloids (3·48 g) were extracted by the method previously described.\(^2\) The crude alkaloids were dissolved in benzene–chboroform (95 : 5) and poured into a column of neutral alumina, and elution with benzene–chloroform (95 : 5) gave a series of crystalline fractions which were combined and crystallized from a small volume of acetone. \(N_\beta \)-Methyltetrahydroharman was obtained as colourless crystals, m.p. 109–110°, [\(\alpha \)]\(\beta \) pm 0° in CHCl₃. A mixed m.p. determination and comparison of i.r. spectra confirmed the identity of the alkaloid with \(N_\beta \)-methyltetrahydroharman isolated from *Acacia compleanata*.\(^1\)

Acknowledgment

The authors are indebted to Dr T. G. Hartley for the collection of leaves of *Spathiostemon javensis*, and for the botanical identification.

*Division of Applied Chemistry, CSIRO Chemical Research Laboratories, P.O. Box 4331, Melbourne, Vic. 3001.
