$v_{\max }(\mathrm{KBr}) 1800(\mathrm{CO})$ and $830 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; n.m.r.: $\delta 0.85(\mathrm{C} 10-\mathrm{Me}), 0.92(\mathrm{C} 4 \mathrm{gem} \mathrm{Me} 2), 2.43$ (s, C11-H), and $5 \cdot 12(\mathrm{~m}, \mathrm{C} 7-\mathrm{H})$.
$1 \alpha, 1 \beta, 10 \beta$-Trimethyl-6-decalone (9)
A solution of the lactone hemiacetal (5) (0.40 g) in ethanol (20 ml) was treated with 1 m sodium hydroxide solution (20 ml) and the mixture was heated under reflux under nitrogen for 3 h . The violet solution was diluted with water and extracted with ether. Workup of the extract gave $I \alpha, I \beta, I O \beta$-trimethyl- 6 -decalone (80 mg) which crystallized from aqueous methanol as plates, m.p. $86-87^{\circ}$ (Found: $\mathrm{C}, 80 \cdot 4 ; \mathrm{H}, 11 \cdot 6 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 80 \cdot 4 ; \mathrm{H}, 11 \cdot 4 \%$). $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1705 \mathrm{~cm}^{-1}$ (CO); n.m.r.: $\delta 0.81,0.86\left(2 \mathrm{~s}, \mathrm{C} 4 \mathrm{gem} \mathrm{Me}_{2}\right.$), and $0.95(\mathrm{C} \mathrm{10-Me})$.

Starting material (0.26 g) was recovered from the alkali-soluble portion after acidification.

1\&,1 1ק,10ß-Trimethyl-6-decalyl Acetate (11)

The ketone (9) $(0.23 \mathrm{~g}, 1.2 \mathrm{mmol})$ was reduced with lithium aluminium tri-t-butoxy hydride $(0.6 \mathrm{~g}, 2.4 \mathrm{mmol})$ in dry diglyme in the normal manner. Workup gave $1 \alpha, 1 \beta, 10 \beta$-trimethyl- 6 -decalol (10) as an oil $(0.23 \mathrm{~g})$. $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3600$ and $3400 \mathrm{~cm}^{-1}(\mathrm{OH}) ; \mathrm{n} . \mathrm{m} . \mathrm{r}$.: $\delta 0 \cdot 84,0 \cdot 86(2 \mathrm{~s}, \mathrm{C} 4 \mathrm{gem}$ $\left.\mathrm{Me}_{2}\right), 1 \cdot 12(\mathrm{C} 10-\mathrm{Me})$, and $4 \cdot 02(\mathrm{~m}, \mathrm{C} 8-\mathrm{H})$.

The alcohol was treated with acetic anhydride (10 ml) and pyridine (0.5 ml) at 20° for 24 h . Workup gave $1 \alpha, 1 \beta, 10 \beta$-trimethyl-6-decalyl acetate (100%) as an oil (Found: C, $75 \cdot 2 ; \mathrm{H}, 10 \cdot 7$. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 6 ; \mathrm{H}, 11.0 \%$). $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1740 \mathrm{~cm}^{-1}$ (OAc); n.m.r.: $\delta 0.82,0.88$ ($2 \mathrm{~s}, \mathrm{C} 4 \mathrm{gem} \mathrm{Me}_{2}$), $1.03(\mathrm{C} 10-\mathrm{Me}$), $2 \cdot 00(\mathrm{OAc})$, and $4.95(\mathrm{~m}, \mathrm{C} 8-\mathrm{H})$.

Ozonolysis of Methyl 12-Hydroxypodocarpa-8,11,13-trien-19-oate

The methyl ester (1) (2.0 g) was ozonized by the reported method ${ }^{1}$ to give 19 -methoxycarbonyl8β-hydroperoxy-13,14,15,16,17-pentanorlabd-9(11)-ene-12,8 α-lactone (3) (50%), m.p. $184-187^{\circ}$ (lit. 1 $185-187^{\circ}$) (correct i.r. and n.m.r. spectra). Hydrogenation gave 19 -methoxycarbonyl-8-oxo-$13,14,15,16,17$-pentanorlabdan-12-oic acid (87%), m.p. $170-171^{\circ}$ (lit. ${ }^{1} 170-171^{\circ}$) (correct i.r. and n.m.r. spectra); dimethyl ester (100%), m.p. $90-93^{\circ}$ (lit. ${ }^{1} 96-97^{\circ}$).

Corrigendum

Volume 27, Number 9

p. 1871, last line of Table 9: for A.f.e. ${ }^{\text {A }}(\%) 4 \quad 4 \quad \mathrm{read}$ A.f.e. ${ }^{\mathrm{A}}(\%) 4$

