Short Communications

Site Lifetime Temperature Variations in Intermolecular Exchange Processes Characterized by a Two-Term Rate Law

Dino L. Pisaniello, Stephen F. Lincoln and Tomas Kurucsev

Department of Physical and Inorganic Chemistry, University of Adelaide, P.O. Box 498, Adelaide, S.A. 5001.

Abstract

The temperature dependence of the site lifetimes, τ_A and τ_B , characterizing the intermolecular exchange of X between sites A and B through simultaneous first-order and second-order processes as expressed in the rate law

$$1/\tau_{\rm A} = \chi_{\rm B}/\chi_{\rm A}\tau_{\rm B} = k_1 + k_2[{\rm B}]$$

and the treatment of such data determined by nuclear magnetic resonance spectroscopy are discussed.

The site lifetimes, τ_A and τ_B , characterizing the intermolecular exchange of X between sites A and B exhibit an Eyring temperature-dependence for a single-term first or higher order exchange rate law. Under the usual circumstances where the ground state and transition state heat capacities are temperature-independent this results in a linear dependence of $\ln(\tau_A T)$ and $\ln(\tau_B T)$ on the reciprocal of temperature, 1/T. However, for a two-term rate law containing a first-order and a second-order term with dissimilar activation enthalpies the dependence of $\ln(\tau_A T)$ and $\ln(\tau_B T)$ on 1/T may become non-linear as recently observed¹ for the exchange of N,N-diethylacetamide (dea) on $[Sc(dea)_6]^{3+}$ shown schematically in equation (1) (where the asterisk is a typographical distinction only)

$$[Sc(dea)_{6}]^{3+} + dea^{*} \rightleftharpoons [Sc(dea)_{5}(dea^{*})]^{3+} + dea$$
(1)
site A site B site A site B

and as predicted by the two-term Eyring equation (2) for τ_A :

$$1/\tau_{\rm A} = k_1 + k_2[{\rm B}]$$

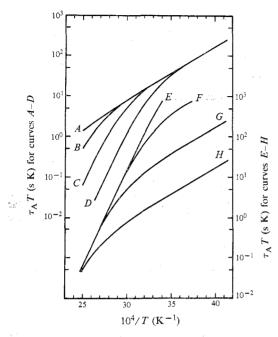
= $(k_{\rm B}T/h) \{ \exp(-\Delta H_1^{\ddagger}/RT + \Delta S_1^{\ddagger}/R) + [{\rm B}] \exp(-\Delta H_2^{\ddagger}/RT + \Delta S_2^{\ddagger}/R) \}$ (2)

In equation (2) k_1 and k_2 are first-order and second-order rate constants, [B] is the concentration of X at site B, the subscripted activation parameters refer to the similarly subscripted rate constants, all other symbols have their usual meaning, and

$$\tau_{\rm A} = \tau_{\rm B} \chi_{\rm A} / \chi_{\rm B}$$

where χ_A and χ_B are the mole fractions of X at sites A and B.

¹ Pisaniello, D. L., and Lincoln, S. F., Inorg. Chem., 1981, 20, 3689.



The simulation of the variation of $\ln(\tau_A T)$ with 1/T through equation (2) for two different sets of activation parameters and over a range of [B] is shown in Fig. 1.

Fig. 1. Variation of $\tau_A T$ with 1/Taccording to equation (2). Curves A-D ΔH_1 [‡] 25 kJ mol⁻¹; ΔH_2 ; 90 kJ mol⁻¹; $\Delta S_1^{\ddagger} - 140 \text{ J K mol}^{-1};$ $\Delta S_2^{\ddagger} 50 \text{ J K mol}^{-1}$. A, [B] $0.01 \text{ mol } \text{dm}^{-3}$; B, [B] $0.1 \text{ mol } \text{dm}^{-3}$; C, [B] $1 \cdot 0 \mod dm^{-3}$; D, [B] 10 mol dm⁻³. Curves E-H ΔH_1 [‡] 90 kJ mol⁻¹; ΔH_2 [‡] 25 kJ mol⁻¹; ΔS_1 [‡] 50 J K mol⁻¹; $\Delta S_2^{\ddagger} - 140 \text{ J K mol}^{-1}$. E, [B] $0.01 \text{ mol } \text{dm}^{-3}$; F, [B] $0.1 \text{ mol } \text{dm}^{-3}$; G, [B] $1 \cdot 0 \mod dm^{-3}$; H, [B] 10 mol dm^{-3} .

Two major points emerge from an examination of the Figure. The first is that the nature of the non-linearity is markedly dependent on the magnitudes of the activation parameters and [B]. Thus when in equation (2) ΔH_1^{\ddagger} and ΔH_2^{\ddagger} are 25 and 90 kJ mol⁻¹ respectively, ΔS_1^{\ddagger} and ΔS_2^{\ddagger} are -140 and 50 J K⁻¹ mol⁻¹ respectively, and [B] is 0.01 mol dm⁻³ it is seen in curve A that there is a linear dependence of $\ln(\tau_A T)$ on 1/T at low temperature where the k_1 term dominates and non-linearity only becomes pronounced at higher temperatures where the k_2 term becomes significant in the exchange process. When [B] is 10 mol dm^{-3} , however, the domination of the exchange process by the k_1 term is restricted to a smaller range at low temperature in which $\ln(\tau_A T)$ is linearly dependent on 1/T and as the temperature increases the k_2 term becomes dominant such that a second range in which $\ln(\tau_A T)$ is linearly dependent on 1/T occurs at high temperatures as seen in curve D. When ΔH_1^{\ddagger} and ΔH_2^{\ddagger} are 90 and 25 kJ mol⁻¹ respectively, ΔS_1^{\ddagger} and ΔS_2^{\ddagger} are 50 and -140 J K⁻¹ mol⁻¹ respectively, and [B] is 0.01 mol dm^{-3} it is seen in curve E that there is a linear dependence of $\ln(\tau_A T)$ on 1/T at high temperatures where the k_1 term dominates and non-linearity only becomes pronounced at low temperatures where the k_2 term becomes significant in the exchange process which is the reverse of the situation shown by curve A. When [B] is 10 mol dm^{-3} the domination of the exchange process by the k_2 term results in a considerable low-temperature range in which $\ln(\tau_A T)$ is linearly dependent on 1/T and it is only at higher temperatures that the k_1 term makes a significant contribution to the exchange process with the resultant nonlinearity shown by curve H.

The second major point emerging from Fig. 1 is that in nuclear magnetic resonance experiments at a given frequency the temperature ranges over which τ_A can be determined may differ considerably for different values of [B]. Apart from the errors

inherent in extrapolation procedures, the non-linearity of the dependence of $\ln(\tau_A T)$ on 1/T renders any attempt to extrapolate such τ_A data obtained at different [B] values into a common temperature range (in order to derive k_1, k_2 , and their associated activation parameters) particularly subject to error. Such errors may be avoided if the surface defined by the complete experimental data set τ_A , T, and [B] is simulated through equation (2) by use of a statistically weighted non-linear least squares method which minimizes the residuals between the experimental and simulated surfaces. Such general data analysis methods have been previously described²⁻⁴ and have been adapted to the above circumstances in our program DATAFIT.

Should a two-term rate law of the form of equation (2) operate with similar ΔH_1^{\ddagger} and ΔH_2^{\ddagger} magnitudes the dependence of $\ln(\tau_A T)$ on 1/T will be linear as will also be the case if the rate law contains only the second-order term. In both of these cases it is also probable that over a significant variation of [B] τ_A will not be determined over a common temperature range for each magnitude of [B] studied. As linearity is simply a limiting case of non-linearity, DATAFIT, or a similar program, may be used to advantage in determining activation parameters in such cases also, as has been demonstrated for hexamethylphosphoramide exchange on zinc(II)⁵ and dimethyl sulfoxide exchange on beryllium(II).⁶

Acknowledgment

We thank the Australian Research Grants Committee for supporting this research.

Manuscript received 19 October 1981

² Wolberg, J. R., in 'Prediction Analysis' (Van Nostrand: Princeton, New Jersey, 1967).

³ Pitha, J., and Jones, R. N., Can. J. Chem., 1966, 44, 3031.

⁴ Dye, J. L., and Nicely, V. A., J. Chem. Educ., 1971, 48, 443.

⁵ Tkaczuk, M. N., and Lincoln, S. F., Aust. J. Chem., 1980, 33, 2621.

⁶ Tkaczuk, M. N., and Lincoln, S. F., Ber. Bunsenges. Phys. Chem., 1981, 85, 433.