Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.)

J. D. Berger A B D , K. N. Adhikari B C , D. Wilkinson C , B. J. Buirchell B C and M. W. Sweetingham B C

A CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia.

B Centre for Legumes in Mediterranean Agriculture, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C Department of Agriculture and Food, Baron-Hay Court, South Perth, WA 6151, Australia.

D Corresponding author. Email: Jens.Berger@csiro.au

Australian Journal of Agricultural Research 59(8) 691-701 http://dx.doi.org/10.1071/AR07384
Submitted: 11 October 2007  Accepted: 20 April 2008   Published: 29 July 2008

Abstract

Agricultural crops and their wild progenitors are excellent candidates for ecophysiologal research because germplasm collections are often extensive and well described, and in its dissemination the crop may explore new habitats. The advent of high-resolution climate models has greatly improved our capacity to characterise plant habitats, and study species’ adaptive responses. The yellow lupin (Lupinus luteus) is ideal because it evolved as a Mediterranean winter-annual in relatively high-rainfall coastal regions, but was domesticated as a summer crop in temperate central Europe. Currently the crop is being developed for Mediterranean south-western Australia, raising an interesting ecophysiological problem: is it more appropriate to concentrate on wild material from Mediterranean habitats, which are likely to be more similar to the target environments, or on European germplasm domesticated for temperate summer cropping?

Lupinus luteus collection sites across the natural and domesticated distribution range were characterised by calculating site-specific bioclimatic variables and habitat types defined using multivariate analysis. Germplasm was evaluated in 2 field trials measuring a range of characters describing plant growth, phenology, architecture, and productivity. The earliest phenology and highest vigour and productivity were recorded in domesticated material from central Europe, characterised by short but unstressful growing seasons with reliable rainfall, long day-lengths, and rapidly rising vegetative-phase temperatures levelling out after flowering. Mediterranean habitats were classified by altitude, climate, and growing-season length. Early, productive germplasm came from warmer/low elevation sites with inconsistent rainfall and stronger terminal drought. Germplasm from low temperature/high elevation sites with high, relatively frequent rainfall had late phenology and low growth rates, early vigour, seed yield, and harvest index.

Distinct habitats within the distribution range of L. luteus have selected for ecotypes with different phenologies and growth rates, which strongly influence plant architecture, fecundity and yield. It is suggested that variable responses to vernalisation and differences in seed size are important in determining these traits. European germplasm has many of the terminal drought-avoiding characteristics required in a productive Mediterranean ideotype, but may lack drought tolerance, which is likely to be under stronger selection pressure in more stressful Mediterranean habitats.

Additional keywords: adaptation, habitat characterisation, phenology, plant growth, productivity.


References

Abbo S Lev-Yadun S Galwey N 2002 Vernalization response of wild chickpea. New Phytologist 154 695 701 doi:10.1046/j.1469-8137.2002.00405.x

Bennett SJ 1997 Genetic variation between and within two populations of Trifolium glomeratum (cluster clover) in Western Australia. Australian Journal of Agricultural Research 48 969 976 doi:10.1071/A96158

Berger JD Ali M Basu PS Chaudhary BD Chaturvedi SK et al. 2006 Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Research 98 230 244 doi:10.1016/j.fcr.2006.02.007

Berger JD Buck RP Henzell JM Turner NC 2005 Evolution in the genus Cicer – vernalization response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Australian Journal of Agricultural Research 56 1191 1200 doi:10.1071/AR05089

Berger JD Robertson LD Cocks PS 2002 Agricultural potential of Mediterranean grain and forage legumes: key differences between and within Vicia species in terms of phenology, yield, and agronomy give insight into plant adaptation to semi-arid environments. Genetic Resources and Crop Evolution 49 313 325 doi:10.1023/A:1015544126185

Berger JD Turner NC Siddique KHM Knights EJ Brinsmead RB Mock I Edmondson C Khan TN 2004 Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement. Australian Journal of Agricultural Research 55 1071 1084 doi:10.1071/AR04104

Bishop AC , Mendham AJ (1996) Quantifying the yield-density relationship for narrow-leafed lupin (Lupinus angustifolius) in Tasmania. In ‘Agronomy — Science with its Sleeves Rolled up. 8th Australian Agronomy Conference’. Toowoomba, Queensland. (Ed. M Asghar) (The Australian Society of Agronomy) (www.agronomy.org.au/proceedings/index.htm)

Christiansen JL Jørnsgård B 2002 Influence of day length and temperature on number of main stem leaves and time to flowering in lupin. Annals of Applied Biology 140 29 35 doi:10.1111/j.1744-7348. 2002.tb00154.x

Clapham WM Willcott JB 1995 Thermosensitivity in Spring White Lupin. Annals of Botany 76 349 357 doi:10.1006/anbo.1995.1107

Clements JC Buirchell BJ Cowling WA 1996 Relationship between morphological variation and geographical origin or selection history in Lupinus pilosus. Plant Breeding 115 16 22 doi:10.1111/j.1439-0523.1996.tb00864.x

Clements JC Cowling WA 1994 Patterns of morphological diversity in relation to geographical origins of wild Lupinus angustifolius from the Aegean region. Genetic Resources and Crop Evolution 41 109 122 doi:10.1007/BF00053055

Ehrman T Cocks PS 1996 Reproductive patterns in annual legume species on an aridity gradient. Vegetatio 122 47 59 doi:10.1007/BF00052815

Fischer A Sengbusch RV 1935 a Die Heimatgebiete von Lupinus albus, Lup. luteus, und Lup. angustifolius. Die Bedeutung der Wildformen für die Züchtung. Zuchter 7 174 182 doi:10.1007/BF01811520

Fischer A Sengbusch RV 1935 b Geschichte des Lupinenanbaus und die Verbreitung der Lupinen in Deutschland, sowie die Moglichkeiten der Erweiterung des Lupinenanbaus. Zuchter 7 182 207 doi:10.1007/BF01811521

Foy CD 1997 Tolerances of lupin species and genotypes to acid soil and coal mine spoil. Journal of Plant Nutrition 20 1095 1118

French RJ Sweetingham MW Shea GG 2001 A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Australian Journal of Agricultural Research 52 945 954
doi:10.1071/AR00084

Gladstones JS (1974) Lupins of the Mediterranean Region and Africa. Department of Agriculture, Technical Bulletin No. 26, Perth, WA.

Gladstones JS (1998) Distribution, origin, taxonomy history and importance. In ‘Lupins as crop plants: Biology, production and utilization’. (Eds JS Gladstones, CA Atkins, J Hamblin) pp. 1–37. (CAB International: Wallingford, UK)

Grime JP (1979) ‘Plant strategies and vegetation processes.’ (John Wiley & Sons: Chichester, UK)

Hackbarth J 1936 Versuche uber Photperiodismus III. Die photoperiodische Reaktionswiese einiger Lupinenarten. Zuchter 8 81 92 doi:10.1007/BF01812257

Hackbarth J 1951 Beobachtungen über den Entwicklungsrhytmus bei Lupinus luteus. Zeitschrift für Pflanzenzüchtung 30 198 209

Hackbarth J 1955 Die oekologischen Ansprueche der Lupinenarten. I. Anbau zur Koernergewinnung. Zeitschrift für Pflanzenzüchtung 35 149 178


Hartisch J 1939 Uber die Wirkung der Keimstimmung auf landwirtschaftliche Nutzpflanzen. Pflanzenbau 15 265 288


Henson IE Turner NC 1991 Stomatal responses to abscisic acid in three lupin species. New Phytologist 117 529 534
doi:10.1111/j.1469-8137.1991.tb00957.x

Hijmans RJ Cameron SE Parra JL Jones PG Jarvis A 2005 Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 1965 1978 doi:10.1002/joc.1276

Hijmans RJ Guarino L Cruz M Rojas E 2001 Computer tools for spatial analysis of plant genetic resources data. 1. DIVA-GIS. Plant Genetic Resources Newsletter 127 15 19

Hondelmann W 1984 The lupin – ancient and modern crop plant. Theoretical and Applied Genetics 68 1 9
doi:10.1007/BF00252301

Huyghe C 1991 Winter growth of autumn-sown white lupin (Lupinus albus L.): main apex growth model. Annals of Botany 67 429 434

Kato K Tanizoe C Beiles A Nevo E 1998 Geographical variation in heading traits in wild emmer wheat, Triticum dicoccoides. II. Variation in heading date and adaptation to diverse eco-geographical conditions. Hereditas 128 33 39
doi:10.1111/j.1601-5223.1998.00033.x

Keeve R Loubser H Kruger GHJ 2000 Effects of temperature and photoperiod on days to flowering, yield and yield components of Lupinus albus (L.) under field conditions. Journal of Agronomy & Crop Science 184 187 196 doi:10.1046/j.1439-037x.2000.00389.x

Lammi JJ (2007) Daylength calculator. Available at: www.geocities.com/jjlammi/sun2.xls

Landers KF 1995 Vernalization responses in narrow-leafed lupin (Lupinus angustifolius) genotypes. Australian Journal of Agricultural Research 46 1011 1025 doi:10.1071/AR9951011

Nevo E Beiles A Gutterman Y Storch N Kaplan D 1984 Genetic resources of wild cereals in Israel and vicinity. I. Phenotypic variation within and between populations of wild wheat, Triticum dicoccoides. Euphytica 33 717 735 doi:10.1007/BF00021900

New M Lister D Hulme M Makin I 2002 A high-resolution data set of surface climate over global land areas. Climate Research 21 1 25 doi:10.3354/cr021001

Noffsinger SL van Santen E 2005 Evaluation of Lupinus albus L. germplasm for the southeastern USA. Crop Science 45 1941 1950 doi:10.2135/cropsci2004.0575

Palta JA Turner NC French RJ 2004 The yield performance of lupin genotypes under terminal drought in a Mediterranean-type environment. Australian Journal of Agricultural Research 55 449 459 doi:10.1071/AR03135

Perry MW Poole ML 1975 Field environment studies on lupins. 1. Developmental patterns in Lupinus angustifolius L., the effects of cultivar, site and planting time. Australian Journal of Agricultural Research 26 81 91 doi:10.1071/AR9750081

Piano P Pecetti L Carroni AM 1996 Climatic adaptation in subterranean clover populations. Euphytica 92 39 44 doi:10.1007/BF00022826

Rahman MS Gladstones JS 1972 Control of lupin flower initiation by vernalization, photoperiods and temperature under controlled environment. Australian Journal of Experimental Agriculture and Animal Husbandry 12 638 645 doi:10.1071/EA9720638

Reeves T Boundy K Brooke H 1977 Phenological development studies with Lupinus angustifolius and L. albus in Victoria. Australian Journal of Experimental Agriculture and Animal Husbandry 17 637 644 doi:10.1071/EA9770637

Sadras VO 2007 Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Research 100 125 138 doi:10.1016/j.fcr.2006.07.004

Schimpf DJ 1977 Seed weight of Amaranthus retroflexus in relation to moisture and length of growing season. Ecology 58 450 453 doi:10.2307/1935621

Sengbusch R Loschakova N 1932 Die Züchtung “weichschaliger” Lupinen (Lupinus luteus). Zuchter 4 5

Sengbusch R Zimmermann K 1937 Die Auffindung der ersten gelben und blauen Lupine (Lupinus luteus und Lupinus angustifolius) mit nicht platzenden Hülsen und die damit zusammenhängenden Probleme der Süßlupinenzüchtung. Zuchter 9 57 65
doi:10.1007/BF01812469

Simpson MJA 1986 Geographical variation in Lupinus albus L. I. Iberia. Plant Breeding 96 232 240

Swiecicki W Rybczynski J Swiecicki WK 2000 Domestication and genetics of the yellow lupin (Lupinus luteus L.) and the biotechnological improvement of lupins. Journal of Applied Genetics 41 11 34


Talhinhas P Leitão J Neves-Martins J 2006 Collection of Lupinus angustifolius L. Germplasm and characterisation of morphological and molecular diversity. Genetic Resources and Crop Evolution 53 563 578
doi:10.1007/s10722-004-2684-0

Troll HJ 1940 a Saatzeitversuche mit Zucht- und Landsorten sowie Wildformen von L. luteus und L. angustifolius. Pflanzenbau 16 403 430

Troll HJ 1940 b Vegetationsbeobachtungen an Lupinen in verschiedenen geographischen Breiten. Zuchter 12 129 193
doi:10.1007/BF01813207

Williams W , Brocklehurst S (1983) Environmental factors affecting plant development in Lupinus albus: the effect of chilling and photoperiod during seedling development on flowering. In ‘Perspectives for peas and lupins as protein crops’. (Eds R Thompson, R Casey) pp. 59–71. (Martinus Nijoff: The Hague)

Yang HA Sweetingham MW Cowling WA 1996 The leaf infection process and resistance to Pleiochaeta setosa in three lupin species. Australian Journal of Agricultural Research 47 787 799 doi:10.1071/AR9960787



Export Citation Cited By (17)