Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

The essential role of genetic resources in narrow-leafed lupin improvement

Jens D. Berger A B F , Jon C. Clements B , Matthew N. Nelson C D , Lars G. Kamphuis A D , Karam B. Singh A D and Bevan Buirchell E
+ Author Affiliations
- Author Affiliations

A CSIRO Plant Industry, Private Bag No. 5, Wembley, WA 6913, Australia.

B Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

D The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia.

E Department of Agriculture and Food, Baron-Hay Court, South Perth, WA 6151, Australia.

F Corresponding author. Email: Jens.Berger@csiro.au

Crop and Pasture Science 64(4) 361-373 https://doi.org/10.1071/CP13092
Submitted: 19 March 2013  Accepted: 27 May 2013   Published: 13 August 2013

Abstract

The narrow-leafed lupin (Lupinus angustifolius L.) is a legume with much to offer to agriculture and human wellbeing through its adaptation to nitrogen- and phosphorus-deficient, acid, sandy soils, and production of nutritious, very low glycemic index grain with manifold health benefits. However, the industry has exploited only a small fraction of the genetic and adaptive diversity of the species, reflecting a short and fragmented domestication history. Given declining global production, unlocking the potential residing in untapped sources of genetic diversity to maximise yield and value is critical for the future of the crop.

To this end, a wide range of genetic resources is under evaluation. The Australian Lupin Collection comprises almost 4600 diverse, mostly wild accessions, many of which have been genotyped using DArT (Diversity Array Technology) markers, and collection sites characterised to facilitate ecophysiology of contrasting material. Additional exotic genetic resources include recombinant inbred line and mutant populations, as well as inter-specific crosses. These resources are being used to investigate specific adaptation and genetic and molecular control of key traits, all of which will be expedited by current efforts to provide a reference genome sequence for L. angustifolius. Genetic base broadening is the current breeding focus, combining distantly related wild and domestic material with elite cultivars in double-backcrosses or topcrosses, with dramatic effects on yield. In future this will be complemented by marker-based, targeted trait introgression to improve narrow-leafed lupin adaptation, quality/value, and fit into the farming system.

Additional keywords: base-broadening, genetic resources, narrow-leafed lupin improvement, targeted trait introgression.


References

Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Functional Plant Biology 30, 1081–1087.
Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation.Crossref | GoogleScholarGoogle Scholar |

Adhikari KN, Buirchell BJ, Thomas GJ, Sweetingham MW, Yang H (2009) Identification of anthracnose resistance in Lupinus albus L. and its transfer from landraces to modern cultivars. Crop & Pasture Science 60, 472–479.
Identification of anthracnose resistance in Lupinus albus L. and its transfer from landraces to modern cultivars.Crossref | GoogleScholarGoogle Scholar |

Ben-David R, Abbo S, Berger JD (2010) Stress gradients select for ecotype formation in Cicer judaicum Boiss., a wild relative of domesticated chickpea. Genetic Resources and Crop Evolution 57, 193–202.
Stress gradients select for ecotype formation in Cicer judaicum Boiss., a wild relative of domesticated chickpea.Crossref | GoogleScholarGoogle Scholar |

Berger JD, Turner NC, Siddique KHM, Knights EJ, Brinsmead RB, Mock I, Edmondson C, Khan TN (2004) Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement. Australian Journal of Agricultural Research 55, 1071–1084.
Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement.Crossref | GoogleScholarGoogle Scholar |

Berger JD, Ali M, Basu PS, Chaudhary BD, Chaturvedi SK, Deshmukh PS, Dharmaraj PS, Dwivedi SK, Gangadhar GC, Gaur PM, Kumar J, Pannu RK, Siddique KHM, Singh DN, Singh DR, Singh SJ, Turner NC, Yadava HS, Yadav SS (2006) Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Research 98, 230–244.
Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India.Crossref | GoogleScholarGoogle Scholar |

Berger JD, Adhikari KN, Wilkinson D, Buirchell BJ, Sweetingham MW (2008a) Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.). Australian Journal of Agricultural Research 59, 691–701.
Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L.).Crossref | GoogleScholarGoogle Scholar |

Berger JD, Ludwig C, Buirchell BJ (2008b) Ecogeography of the old world lupins: characterising the habitat range. In ‘Lupins for health and wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) pp. 355–361. (International Lupin Association: Canterbury, New Zealand)

Berger JD, Milroy SP, Turner NC, Siddique KHM, Imtiaz M, Malhotra R (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180, 1–15.
Chickpea evolution has selected for contrasting phenological mechanisms among different habitats.Crossref | GoogleScholarGoogle Scholar |

Berger JD, Buirchell B, Luckett DJ, Nelson MN (2012a) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 124, 637–652.
Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383it1Knug%3D%3D&md5=df2da6c6f6e8643c31e74eda1fe2b455CAS | 22069118PubMed |

Berger JD, Buirchell B, Luckett DJ, Palta JA, Ludwig C, Liu D (2012b) How has narrow-leafed lupin changed in its 1st 40 years as an industrial, broad-acre crop? A G×E-based characterization of yield-related traits in Australian cultivars. Field Crops Research 126, 152–164.
How has narrow-leafed lupin changed in its 1st 40 years as an industrial, broad-acre crop? A G×E-based characterization of yield-related traits in Australian cultivars.Crossref | GoogleScholarGoogle Scholar |

Berger JD, Hughes S, Snowball R, Redden R, Bennett SJ, Clements JC, Nawar F (2013) Strengthening the impact of plant genetic resources through collaborative collection, conservation, characterization and evaluation: a tribute to the legacy of Dr Clive Francis. Crop & Pasture Science 64, 300–311.

Boersma J, Pallotta M, Li C, Buirchell B, Sivasithamparam K, Yang H (2005) Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cellular & Molecular Biology Letters 10, 331–344.

Buirchell B (2008) Lupin breeding—where to from here. In ‘Lupins for Health and Wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) pp. 226–230. (International Lupin Association: Canterbury, New Zealand)

Buirchell B, Cowling W (1992) Domestication of roughseeded lupins. Journal of Agriculture-Western Australia (4th Series) 33, 131–137.

Capraro J, Clemente A, Rubio LA, Magni C, Scarafoni A, Duranti M (2011) Assessment of the lupin seed glucose-lowering protein intestinal absorption by using in vitro and ex vivo models. Food Chemistry 125, 1279–1283.
Assessment of the lupin seed glucose-lowering protein intestinal absorption by using in vitro and ex vivo models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmt7jE&md5=a24ecad76cbfd59c2191c326ad59bebbCAS |

Chen YL, Dunbabin VM, Postma JA, Diggle AJ, Palta JA, Lynch JP, Siddique KHM, Rengel Z (2011) Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes. Plant and Soil 348, 345–364.
Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gnt7rE&md5=d7ad816144a2986c6a24b90a8c119826CAS |

Clements JC, Atkins CA (2001) Characterization of a non-abscission mutant in Lupinus angustifolius L.: physiological aspects. Annals of Botany 88, 629–635.
Characterization of a non-abscission mutant in Lupinus angustifolius L.: physiological aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntV2ms7g%3D&md5=ec4d0acea572834b607cf76d2a66f5baCAS |

Clements JC, Dracup M, Galwey N (2002) Effect of genotype and environment on proportion of seed hull and pod wall in lupin. Australian Journal of Agricultural Research 53, 1147–1154.
Effect of genotype and environment on proportion of seed hull and pod wall in lupin.Crossref | GoogleScholarGoogle Scholar |

Clements JC, Zvyagin AV, Silva KKMBD, Wanner T, Sampson DD, Cowling WA (2004) Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds. Plant Breeding 123, 266–270.
Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds.Crossref | GoogleScholarGoogle Scholar |

Clements JC, Dracup M, Buirchell BJ, Smith CG (2005) Variation for seed coat and pod wall percentage and other traits in a germplasm collection and historical cultivars of lupins. Australian Journal of Agricultural Research 56, 75–83.
Variation for seed coat and pod wall percentage and other traits in a germplasm collection and historical cultivars of lupins.Crossref | GoogleScholarGoogle Scholar |

Clements JC, Buirchell B, Yang H, Smith PMC, Sweetingham MW, Smith GC (2006) Lupin. In ‘Genetic resources, chromosome engineering, and crop improvement. Vol. 3’. (Eds RJ Singh, PP Jauhar) pp. 231–302. (CRC Press: Boca Raton, FL)

Clements J, Prilyuk L, Quealy J Francis G (2008)Interspecific crossing among the New World lupin species for Lupinus mutabilis crop improvement. In ‘Lupins for health and wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) p. 18. (International Lupin Association: Canterbury, New Zealand)

Clements J, Chong L, Quealy J, Prilyuk L, Yang H, Francis G, Buirchell B (2009) Interspecific hybrids between Lupinus angustifolius and L. luteus–an avenue to increase the value of narrow-leafed lupin in Australia. SABRAO Journal of Breeding and Genetics 41,

Clements JC, Wilson J, Sweetingham MW, Quealy J, Francis G (2012) Male sterility in three crop Lupinus species. Plant Breeding 131, 155–163.
Male sterility in three crop Lupinus species.Crossref | GoogleScholarGoogle Scholar |

Cowling WA, Gladstones JS (2000) ‘Lupin breeding in Australia.’ pp. 541–547. (Springer: Dordrecht, The Netherlands)

Cowling WA, Tarr A (2004) Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.). Australian Journal of Agricultural Research 55, 745–751.
Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar |

Cowling WA, Huyghe C, Swiecicki W (1998) Lupin breeding. In ‘Lupins as crop plants: Biology, production and utilization’. (Eds JS Gladstones, CA Atkins, J Hamblin) pp. 93–120. (CAB International: Wallingford, UK)

Cowling WA, Buirchell BJ, Falk DE (2009) A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop & Pasture Science 60, 1009–1015.
A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCntr%2FO&md5=88b9c7155969833459eb69de96679843CAS |

Croxford AE, Rogers T, Caligari PD, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytologist 180, 594–607.
High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKms7rK&md5=61d1b2b15c694233424d006fcfb85bafCAS | 18684160PubMed |

Culvenor C, Petterson D (1986) Lupin toxins–alkaloids and phomopsins. In ‘Proceedings of the 4th International Lupin Conference’. 15–22 August 1986, Geraldton, W. Aust. pp. 188–198. (Department of Agriculture, Western Australia/International Lupin Association: South Perth, W. Aust.)

Drummond CS, Eastwood RJ, Miotto STS, Hughes CE (2012) Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete taxon sampling. Systematic Biology 61, 443–460.
Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete taxon sampling.Crossref | GoogleScholarGoogle Scholar | 22228799PubMed |

Eastwood RJ, Hughes CE (2008) Origins of domestication of Lupinus mutabilis in the Andes. In ‘Lupins for health and wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) pp. 373–379. (International Lupin Association: Canterbury, New Zealand)

Evans A (1994) The carbohydrates of lupins, composition and uses. In ‘Proceeding of First Australian Lupin Technical Symposium’. 17–22 October 1994, Perth, W. Aust. (Eds M Dracup, J Palta) pp. 110–114. (Department of Agriculture, Western Australia: South Perth, W. Aust.)

FAO (2013) ‘FAOSTAT. Vol. 2013.’ (Food and Agriculture Organization of the United Nations: Rome)

Foley RC, Gao L-L, Spriggs A, Soo LY, Goggin DE, Smith PM, Atkins CA, Singh KB (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biology 11, 59
Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2msrY%3D&md5=4fe8e465952f5330bc73166093b37fbdCAS | 21457583PubMed |

Francis C, Gladstones J (1963) Studies on the use of mutagenic agents in plant breeding. I. The effect of seed moisture content on sensitivity to X-ray in Lupinus angustifolius. Australian Journal of Agricultural Research 14, 12–19.
Studies on the use of mutagenic agents in plant breeding. I. The effect of seed moisture content on sensitivity to X-ray in Lupinus angustifolius.Crossref | GoogleScholarGoogle Scholar |

Fryirs C, Eisenhaur B, Duckworth S (2008) Luteins in lupins—An eye for health. In ‘Lupins for health and wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) pp. 488–495. (International Lupin Association: Canterbury, New Zealand)

Gao L-L, Hane JK, Kamphuis LG, Foley R, Shi B-J, Atkins CA, Singh KB (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 12, 521

Gladstones JS (1970) Lupins as crop plants. Field Crop Abstracts 23, 123–148.

Gladstones JS (1989) Breeding Phomopsis-resistant lupins. Journal of Agriculture, Western Australia 30, 3–7.

Gladstones JS (1994) An historical review of lupins in Australia. In ‘1st Lupin Technical Symposium’. 17–22 October 1994, Perth, W. Aust. (Eds M Dracup, JA Palta) pp. 1–38. (Department of Agriculture, Western Australia: South Perth, W. Aust.)

Gladstones J, Francis C (1965a) Studies on the use of mutagenic agents in plant breeding. II. The effects of dose and seed moisture content on mutation production in Lupinus angustifolius by X-rays. Australian Journal of Agricultural Research 16, 301–310.
Studies on the use of mutagenic agents in plant breeding. II. The effects of dose and seed moisture content on mutation production in Lupinus angustifolius by X-rays.Crossref | GoogleScholarGoogle Scholar |

Gladstones JS, Francis CM (1965b) Low-alkaloid mutants of Lupinus digitatus Forsk. Nature 207, 553–554.
Low-alkaloid mutants of Lupinus digitatus Forsk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvFWhtLw%3D&md5=166b1e359e409c1434934c2a739ee79dCAS |

Glencross B, Hawkins W, Evans D, Rutherford N, McCafferty P, Dods K, Sipsas S (2008) Assessing the implications of variability in the digestible protein and energy value of lupin kernel meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 277, 251–262.
Assessing the implications of variability in the digestible protein and energy value of lupin kernel meals when fed to rainbow trout, Oncorhynchus mykiss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVCgsbo%3D&md5=2fe19c22d6972f64cd2f678f4465d7bdCAS |

Goggin DE, Mir G, Smith WB, Stuckey M, Smith PMC (2008) Proteomic analysis of lupin seed proteins to identify Conglutin β as an allergen, Lup an 1. Journal of Agricultural and Food Chemistry 56, 6370–6377.
Proteomic analysis of lupin seed proteins to identify Conglutin β as an allergen, Lup an 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVejs78%3D&md5=b666299d58863a5e351634f990532eceCAS | 18620408PubMed |

Gremigni P, Hamblin J, Harris D, Cowling WA (2003) The interaction of phosphorus and potassium with seed alkaloid concentrations, yield and mineral content in narrow-leafed lupin (Lupinus angustifolius L.). Plant and Soil 253, 413–427.
The interaction of phosphorus and potassium with seed alkaloid concentrations, yield and mineral content in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKqs74%3D&md5=6f39a002484c745da04f2e7244ba50a6CAS |

Grime JP (1977) Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111, 1169–1194.
Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory.Crossref | GoogleScholarGoogle Scholar |

Gupta S, Buirchell BJ, Cowling WA (1996) Interspecific reproductive barriers and genomic similarity among the rough-seeded Lupinus species. Plant Breeding 115, 123–127.
Interspecific reproductive barriers and genomic similarity among the rough-seeded Lupinus species.Crossref | GoogleScholarGoogle Scholar |

Hackbarth J (1957) Die Gene der Lupinenarten I. Gelbe Lupinen (Lupinus luteus L.). Z. Pflanzenzüchtung 37, 253–255.

Hamilton-Reeves JM, Vazquez G, Duval SJ, Phipps WR, Kurzer MS, Messina MJ (2010) Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertility and Sterility 94, 997–1007.
Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVGhtro%3D&md5=532e94a82587a4c833b5a9a37f293aa9CAS | 19524224PubMed |

Hondelmann W (1984) The Lupin-ancient and modern crop plant. Theoretical and Applied Genetics 68, 1–9.

Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the United States of America 103, 10334–10339.
Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlOhsr8%3D&md5=11f58463ea6e379d85b876496ffe4492CAS | 16801546PubMed |

Jefferson WN, Padilla-Banks E, Newbold RR (2007) Disruption of the developing female reproductive system by phytoestrogens: Genistein as an example. Molecular Nutrition & Food Research 51, 832–844.
Disruption of the developing female reproductive system by phytoestrogens: Genistein as an example.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OjtLc%3D&md5=c6d703250136093c6be0f297be52670dCAS |

Johnson SK, Chua V, Hall RS, Baxter AL (2006) Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men. The British Journal of Nutrition 95, 372–378.
Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtF2qsrc%3D&md5=4507e6698f55fe9216a77dd77ffca843CAS | 16469156PubMed |

Kasprzak A, Šafář J, Janda J, Doležel J, Wolko B, Naganowska B (2006) The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cellular & Molecular Biology Letters 11, 396–407.
The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Oisr7L&md5=79bf88b62cd13f0dc390002457912d68CAS |

Kasten W, Paradies T, Kunert R, Straka P (1991) Progress in realization of interspecific hybrids in the genus Lupinus by means of an embryo rescue technique. Biologisches Zentralblatt 110, 301–309.

Kurlovich BS (2002) The history of lupin domestication. In ‘Lupins, geography, classification, genetic resources and breeding’. pp. 147–164. (Intan: St Petersburg)

Ladizinsky G (1985) Founder effect in crop-plant evolution. Economic Botany 39, 191–199.
Founder effect in crop-plant evolution.Crossref | GoogleScholarGoogle Scholar |

Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). American Journal of Botany 100, 263–288.
How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVGjtrY%3D&md5=d9a3f3c5ac414454b51bdde9c857b1daCAS | 23347972PubMed |

Lee YP, Mori TA, Sipsas S, Barden A, Puddey IB, Burke V, Hall RS, Hodgson JM (2006) Lupin-enriched bread increases satiety and reduces energy intake acutely. The American Journal of Clinical Nutrition 84, 975–980.

Lee YP, Mori TA, Puddey IB, Sipsas S, Ackland TR, Beilin LJ, Hodgson JM (2009) Effects of lupin kernel flour–enriched bread on blood pressure: a controlled intervention study. The American Journal of Clinical Nutrition 89, 766–772.
Effects of lupin kernel flour–enriched bread on blood pressure: a controlled intervention study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFGltLs%3D&md5=614ac7e2635e78e3d7192450458842ecCAS | 19144734PubMed |

Lesniewska K, Książkiewicz M, Nelson MN, Mahé F, Aïnouche A, Wolko B, Naganowska B (2011) Assignment of 3 genetic linkage groups to 3 chromosomes of narrow-leafed lupin. The Journal of Heredity 102, 228–236.
Assignment of 3 genetic linkage groups to 3 chromosomes of narrow-leafed lupin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlaksrc%3D&md5=e87812ccc8a9a76761a18b6120b87352CAS | 20947695PubMed |

Mahé F, Markova D, Pasquet R, Misset M-T, Aïnouche A (2011) Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L. Molecular Phylogenetics and Evolution 60, 49–61.
Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L.Crossref | GoogleScholarGoogle Scholar | 21550410PubMed |

Naganowska B (2000) Chromosomes of Lupinus hispanicus subsp. hispanicus Boiss. et Reut., L. luteus L. and their hybrids. Journal of Applied Genetics 41, 167–170.

Nelson MN, Phan HTT, Ellwood SR, Moolhuijzen PM, Hane J, Williams A, O’Lone CE, Fosu-Nyarko J, Scobie M, Cakir M, Jones MGK, Bellgard M, Ksiarkiewicz M, Wolko B, Barker SJ, Oliver RP, Cowling WA (2006) The first gene-based map of Lupinus angustifolius L. – location of domestication genes and conserved synteny with Medicago truncatula. Theoretical and Applied Genetics 113, 225–238.
The first gene-based map of Lupinus angustifolius L. – location of domestication genes and conserved synteny with Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFSit7s%3D&md5=a37faf9aa866157ddba89b4a7f57f538CAS | 16791689PubMed |

Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Święcicki W, Wolko B, Cowling WA (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Research 17, 73–83.
Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVymtbw%3D&md5=7c28c4ba8168e2f046dae71caaffe3fbCAS | 20133394PubMed |

O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D (2013) An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel Insights into phosphorus acclimation in plants. Plant Physiology 161, 705–724.
An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel Insights into phosphorus acclimation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqs78%3D&md5=46abacffdfe459aa80a433b5f245126dCAS | 23197803PubMed |

Oram RN (1983) Selection for higher seed yield in the presence of the deleterious low alkaloid allele iucundus in Lupinus angustifolius L. Field Crops Research 7, 169–180.
Selection for higher seed yield in the presence of the deleterious low alkaloid allele iucundus in Lupinus angustifolius L.Crossref | GoogleScholarGoogle Scholar |

Parra-González L, Aravena-Abarzua G, Navarro-Navarro C, Udall J, Maughan J, Peterson L, Salvo-Garrido H, Maureira-Butler I (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13, 425
Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies.Crossref | GoogleScholarGoogle Scholar | 22920992PubMed |

Peeters KA, Nordlee JA, Penninks AH, Chen L, Goodman RE, Bruijnzeel-Koomen CA, Hefle SL, Taylor SL, Knulst AC (2007) Lupine allergy: not simply cross-reactivity with peanut or soy. The Journal of Allergy and Clinical Immunology 120, 647–653.
Lupine allergy: not simply cross-reactivity with peanut or soy.Crossref | GoogleScholarGoogle Scholar | 17637469PubMed |

Phan HTT, Ellwood SR, Adhikai K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): Identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Research 14, 59–70.
The first genetic and comparative map of white lupin (Lupinus albus L.): Identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OktLc%3D&md5=4da5787896af5aeb494269c4b5a869c9CAS |

Pigeaire A, Abernethy D, Smith P, Simpson K, Fletcher N, Lu C-Y, Atkins C, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Molecular Breeding 3, 341–349.
Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFensbw%3D&md5=88544f7cf0f9078646a6d3527ef17c7eCAS |

Roy NN, Gladstones JS (1988) Further studies with interspecific hybridization among Mediterranean/African lupin species. Theoretical and Applied Genetics 75, 606–609.
Further studies with interspecific hybridization among Mediterranean/African lupin species.Crossref | GoogleScholarGoogle Scholar |

Sengbusch R, Zimmermann K (1937) Die Auffindung der ersten gelben und blauen Lupine (Lupinus luteus und Lupinus angustifolius) mit nicht platzenden Hülsen und die damit zusammenhängenden Probleme der Süßlupinenzüchtung. Züchter 9, 57–65.

Si P, Sweetingham M, Buirchell B, Bowran D, Piper T (2006) Genotypic variation in metribuzin tolerance in narrow-leafed lupin (Lupinus angustifolius L.). Animal Production Science 46, 85–91.
Genotypic variation in metribuzin tolerance in narrow-leafed lupin (Lupinus angustifolius L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyqsLw%3D&md5=d090bac5649a4beab6e0e93619b9d935CAS |

Si P, Buirchell B, Sweetingham M (2009) Improved metribuzin tolerance in narrow-leafed lupin (Lupinus angustifolius L.) by induced mutation and field selection. Field Crops Research 113, 282–286.
Improved metribuzin tolerance in narrow-leafed lupin (Lupinus angustifolius L.) by induced mutation and field selection.Crossref | GoogleScholarGoogle Scholar |

Sipsas S (2008) Lupin products-Concepts and reality. In ‘Lupins for health and wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) pp. 506–513. (International Lupin Association: Canterbury, New Zealand)

Spillane C, Gepts P (2000) Evolutionary and genetic perspectives on the dynamics of crop genepools. In ‘Broadening the genetic base of crop production’. (Eds HD Cooper, C Spillane, T Hodgkin) pp. 25–70. (CAB International: Wallingford, UK)

Sweetingham M, Kingwell R (2008) Lupins—reflections and future prospects. In ‘Lupins for health and wealth. Proceedings of the 12th International Lupin Conference’. 14–18 September 2008, Fremantle, W. Aust. (Eds JA Palta, JD Berger) pp. 514–524. (International Lupin Association: Canterbury, New Zealand)

Swiecicki W, Swiecicki W (1995) Domestication and breeding improvement of narrow-leafed lupin (L. angustifolius L.). Journal of Applied Genetics 36, 155–167.

Święcicki WK, Święcicki W, Nijaki T (1999) Lupinus × hispanicoluteus-an interspecific hybrid of Old World lupins. Acta Societatis Botanicorum Poloniae 68, 217–220.
Lupinus × hispanicoluteus-an interspecific hybrid of Old World lupins.Crossref | GoogleScholarGoogle Scholar |

Swiecicki W, Rybczynski J, Swiecicki WK (2000) Domestication and genetics of the yellow lupin (Lupinus luteus L.) and the biotechnological improvement of lupins. Journal of Applied Genetics 41, 11–34.

Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066.
Seed banks and molecular maps: unlocking genetic potential from the wild.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFSisrw%3D&md5=8b0ec5247a269d2ebd00afa1374c2b7dCAS | 9262467PubMed |

Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics 92, 191–203.
Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Crossref | GoogleScholarGoogle Scholar |

Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiology 131, 1064–1079.
Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFemu74%3D&md5=a0af8b58f211ab01f490a5d3d9f625dcCAS | 12644659PubMed |

Walton G, Francis C (1975) Genetic influences on the split seed disorder in Lupinus angustifolius. Australian Journal of Agricultural Research 26, 641–646.
Genetic influences on the split seed disorder in Lupinus angustifolius.Crossref | GoogleScholarGoogle Scholar |

Wolko B, Clements J, Naganowska B, Nelson M, Yang H (2011) Lupinus. In ‘Wild crop relatives: genomic and breeding resources’. (Ed. C Kole) pp. 153–206. (Springer: Heidelberg, Germany)

Yang H, Lin R, Renshaw D, Li C, Adhikari K, Thomas G, Buirchell B, Sweetingham M, Yan G (2010) Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.). Molecular Breeding 25, 239–249.
Development of sequence-specific PCR markers associated with a polygenic controlled trait for marker-assisted selection using a modified selective genotyping strategy: a case study on anthracnose disease resistance in white lupin (Lupinus albus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlKltQ%3D%3D&md5=7a45efd12a651b217768e16575ce1b16CAS |

Yang H, Tao Y, Zheng Z, Li C, Sweetingham M, Howieson J (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13, 318
Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslaju7rI&md5=7c3540d301ec5d71f9f84b81ad2b6fd3CAS | 22805587PubMed |

Yang H, Tao Y, Zheng Z, Shao D, Li Z, Sweetingham M, Buirchell B, Li C (2013) Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theoretical and Applied Genetics 126, 511–522.
Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslakurk%3D&md5=feeda451a7617b194ad1e56b6a285de9CAS | 23086512PubMed |

Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genetic Resources and Crop Evolution 46, 133–142.
Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East.Crossref | GoogleScholarGoogle Scholar |

Zohary D, Hopf M (2000) Lupins: Lupinus. In ‘Domestication of plants in the Old World’. 3rd edn. pp. 122–124. (Clarendon Press: Oxford, UK)