10.1071/CP13444_AC © CSIRO 2014 Supplementary Material: Crop & Pasture Science, 2014, 65(10), 1033-1043. Summer-growing perennial grasses are a potential new feed source in the low rainfall environment of southern Australia Katrien Descheemaeker^{A,F}, Rick Llewellyn^B, Andrew Moore^C, and Anthony Whitbread^{D,E} ^APlant Production Systems, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands. ^BCSIRO Sustainable Agriculture Flagship, PMB 2, Glen Osmond, SA 5064, Australia. ^CCSIRO Sustainable Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia. ^DCrop Production Systems in the Tropics, Georg-August-Universität Göttingen, Grisebachstr*aβe* 6, 37077 Göttingen, Germany. ^EInternational Crops Research Institute for the Semi-arid Tropics (ICRISAT), Patancheru, AP, India. ^FCorresponding author. Email: katrien.descheemaeker@wur.nl Table 1: Values of the parameters used in the simulations of C4 perennial grass Parameters marked with * have been added since the GRAZPLAN pasture model was originally published by Moore *et al.* (1997); parameters marked with [†] have changed their name or meaning. Optional parameters that are not used in this parameter set have not been listed. | Parameter | Units | Meaning | Value | |---------------------------|------------|--|-------| | grass | | TRUE for grasses | TRUE | | legume | | TRUE for legumes | FALSE | | annual | | TRUE for annuals, FALSE for perennials | FALSE | | isc4 | | TRUE if the species has the C ₄ photosynthetic pathway | TRUE | | longday | | TRUE if long days required to induce reproductive growth | FALSE | | K_{V3j} | °C | Base temperature for degree-day computations | 10 | | K_{V5j} | °d | Degree-day sum for commencement of reproductive growth | 800 | | K_{V6j} | °d | Degree-day sum for commencement of flowering | 300 | | K_{V9j} | °d | Degree-day sum beyond which the reproductive phenostage can end | 1500 | | <i>K</i> _{V10j} | 0-1 | Value of the soil moisture growth-limiting factor that defines "drought" for the senescence calculations | 0.25 | | K _{V15j} * | 0-1 | Reduction in the rate of development due to water stress in pre-flowering, reproductive plants | 0.0 | | K _{V16j} * | °C | Temperature threshold for the onset of winter dormancy | 19 | | K _{V17j} * | hr | Threshold day length to end of winter dormancy at T_{lag} =0.0 | 11.5 | | K _{V18j} * | hr/ºC | Reduction in threshold day length to end winter dormancy | 0.0 | | K _{V20j} * | d | Length of the drought period required to end reproductive growth when DD(j)= K_{V9j} | 5.0 | | K _{V21j} * | °d | Value of DD(j) at which senescence occurs in the absence of drought | 2000 | | K_{l1j} | m²/g | Reference specific leaf area (ratio of leaf area index to leaf weight) | 0.030 | | K _{12j} * | m²/g | Reference specific stem area | 0.005 | | K _{13j} * | $MJ/m^2/d$ | Curvature factor for effect of light on specific area | 13.5 | | K _{14j} * | °C | Temperature threshold for maximal specific area | 15.0 | | K _{15j} * | 0-1 | Relative specific area at 0°C | 0.60 | | K _{16j} * | - | Relative decrease in specific leaf area at twice reference [CO ₂] | 0.18 | | K_{l7j}^{\dagger} | 0-1 | Apparent light extinction coefficient under ungrazed conditions | 0.55 | | K_{l8j}^{\dagger} | 0-1 | Apparent extinction coefficient under heavily grazed conditions | 0.80 | | K_{RU1j}^{\dagger} | g/MJ | Radiation use efficiency for gross assimilation under reference conditions | 3.50 | | K_{RU2j}^{\dagger} | MJ/m²/hr | Effect of radiation intensity on radiation use efficiency (formerly K_{l4j}) | 99.9 | | K _{RU3j} * | 0-1 | Relative photosynthetic efficiency of stems | 0.30 | | K _{RU4j} * | ppm | CO2 compensation point at 0°C | 0.0 | | K _{RU5j} * | ppm | CO2 compensation point at 20°C | 0.0 | | K _{RU6j} * | °C | Maximum temperature for CO2 compensation function | 45.0 | | <i>K_{BT1j}</i> * | kPa g kg-1 | Biomass-transpiration coefficient | 16.0 | | K_{T1j}^{\dagger} | °C | Temperature for 5% of maximum gross assimilation rate | 15.0 | | K_{T2j}^{\dagger} | °C | Temperature for 95% of maximum gross assimilation rate | 25.0 | | $K_{W1j}^{}$ | 0-1 | Transpiration ratio below which assimilation rate decreases | 0.30 | | K_{WL1j}^{\dagger} | 0-1 | WFPS threshold for waterlogging | 0.85 | | K_{WL2j}^{\dagger} | - | Curvature of growth limitation by waterlogging | 23.0 | | Parameter | Units | Meaning | Value | | | |--------------------------|--------------|--|---------|---------|--| | K _{MR1j} † | /d | Maximum relative growth rate of shoots during dormancy (formerly K_{A5j}) | 1.0 | | | | K_{U1j} | - | Threshold growth-limiting factor for translocation from belowground reserves | 0.40 | | | | K_{U2j} | /d | Relative rate of translocation from belowground reserves | 0.02 | | | | K _{RE1j} * | g/g/d | Maintenance respiration rate at 10°C (g DM/g N/d) | 0.4 | | | | K _{RE2j} * | - | Q10 factor for maintenance respiration | 1.75 | | | | K _{RE3j} * | 0-1 | Reduction in maintenance respiration in summer- or winter-dormant plants | 0.0 | | | | K _{RE4j} * | g/g | Growth respiration rate | 0.25 | | | | K_{A1j} | - | Target root:shoot ratio during vegetative growth | 0.5 | | | | K_{A2j} | - | Target root:shoot ratio during reproductive growth | 0.3 | | | | K_{A4j} | 0-1 | Maximum value of the ratio (leaf allocation):(shoot allocation) | 0.6 | | | | K _{A5j} * | 0-1 | Minimum value of the ratio (leaf allocation):(shoot allocation) | 0.6 | | | | K _{MO1j} * | - | Parameter governing height distribution of leaves | 0.0 | | | | K _{R1j} * | mm | Maximum rooting depth under optimal soil conditions | 1200 | | | | K _{R2j} * | mm/°d | Maximum rate of root front extension | 2.0 | | | | K _{R3j} * | °C | Base temperature for root front extension | 0.0 | | | | K _{R4j} * | 0-1 | ASW below which root extension is reduced | 0.25 | | | | K _{R5j} * | Mg/m³ | Threshold bulk density for reduced root extension in 100% sand | 1.40 | | | | K _{R6j} * | Mg/m³ | Threshold bulk density for reduced root extension in 0% sand | 1.20 | | | | K _{R7j} * | m³/Mg | Rate of decrease in root extension with increasing bulk density | 2.0 | | | | K _{R8j} * | 0-1 | Minimum value of the bulk density effect on root extension | 0.10 | 0.10 | | | K _{R9j} * | m/g | Specific root length | 115.0 | | | | K _{R10j} * | m | Average radius of effective roots | 0.00016 | 0.00016 | | | K _{D1j} * | ∘d | Thermal age at which death of shoots commences | 800.0 | | | | K _{D2j} * | /ºd | Background death rate of old shoots in seedlings & established plants | 0.0030 | | | | K _{D3j} * | /ºd | Additional death rate of all shoots in senescing plants | 0.0 | | | | K_{D4j}^{\dagger} | ōС | Temperature for 5% mortality at the first frost (formerly K_{D2j}) | 0.0 | | | | K _{D5j} † | ōС | Temperature for 95% mortality at the first frost (formerly K_{D3j}) | -5.0 | | | | K _{D6j} † | ōС | Frost-hardening factor (formerly K_{D4j}) | 0.0 | | | | K _{DR2j} * | /d | Specific root loss rate at 10°C | 0.0020 | | | | K _{F1,leaf,j} † | /d | Fall of standing dead: reference rate for leaf | 0.0050 | | | | K _{F1,stem,j} † | /d | Fall of standing dead: reference rate for stem | 0.0020 | | | | K_{F2j}^{\dagger} | - | Fall of standing dead: maximum relative effect of precipitation | 40.0 | | | | K _{F3j} † | /mm | Fall of standing dead: curvature of precipitation effect | 10.0 | | | | K _{F4j} † | /kg animal/d | Fall of standing dead: trampling effect | 30.0 | | | | , | | | Leaf | Stem | | | K _{Q1pj} * | g/g | Average digestibility of newly-produced herbage | 0.80 | 0.75 | | | Κ _{Q2pj} * | g/g | Minimum digestibility of green herbage during vegetative growth | 0.60 | 0.55 | | | К _{Q3pj} * | g/g | Minimum digestibility of green herbage during reproductive growth | 0.55 | 0.35 | | | κ _{Q4j} * | o, o
2d | Thermal time during which green leaf maintains its digestibility | 100.0 | | | | К _{Q5pj} * | /ºd | Rate parameter for decline of DMD of green herbage | 0.008 | 0.004 | | | к _{Q6j} * | 5C | Base temperature for maturation & senescence of green tissue | 4.0 | | | | Parameter | Units | Meaning | Value | | | |---|------------------|--|----------|--------|-------| | K _{Y1j} * | /d | Reference rate of microbial decomposition of digestible DM | 0.020 | | | | K _{Y2j} * | - | Factor for temperature response of decomposition | 4.7 | | | | K _{Y3j} * | ōС | Factor for temperature response of decomposition | 32 | | | | K _{Y4j} * | - | Minimum value of the moisture factor for standing dead | 0.05 | | | | K _{Y5j} * | g/g | Maximum moisture content of standing dead | 7 | | | | K _{Y6j} * | - | ASW for 5% of maximum decomposition | -0.2 | | | | K _{Y7j} * | - | ASW for 95% of maximum decomposition | 0.85 | | | | K _{Y8j} * | 0-1 | Relative rate of decomposition of indigestible DM | 0.10 | | | | <i>K</i> _{<i>Y</i>9<i>j</i>} * | g/m ² | Critical mass for "thatch" effect on litter decay | | | | | | | | Leaf | Stem | • | | K_{BR1pj} * | /d | Background rate of breakdown of litter | 0.10 | 0.02 | • | | K _{BR2j} * | /kg animal/d | Litter breakdown: trampling effect | 10 | | - | | K _{BR3j} * | /d | Rate of litter incorporation under dry soil conditions | 0.02 | | | | K _{BR4j} * | /d | Rate of litter incorporation under wet soil conditions | 0.05 | | | | K _{BR5j} * | g/m² | Critical mass for "thatch" effect on comminution | 200.0 | | | | | | | Leaf | Stem | Root | | $K_{NU1,Npj}$ * | g/g | Maximum content of N in live biomass | 0.040 | 0.020 | 0.015 | | $K_{NU2,Npj}$ * | g/g | Minimum content of N in live biomass (at maximum DMD for leaf and stem) | 0.030 | 0.0075 | 0.010 | | $K_{NU3,Npj}$ * | g/g | Minimum content of N in live herbage at midpoint DMD | 0.020 | 0.005 | | | $K_{NU4,Npj}$ * | g/g | Minimum content of N in green herbage at minimum DMD | 0.015 | 0.003 | | | K _{NU5,leaf,j} * | - | Relative decrease in leaf N content (per unit leaf area) at twice reference [CO ₂] | 0.1 | | | | K _{NU5pj} * | - | Relative decrease in N content (per unit mass) at twice reference [CO ₂] | | 0.0 | 0.0 | | $K_{UE1,NO3,j}$ * | - | Uptake effectiveness parameter for nitrate | 1.0 | | | | K _{UE1,NH4,j} * | - | Uptake effectiveness parameter for ammonium | 1.0 | | | | K _{RL1Nj} * | /d | Relocation rate parameter for N | 0.33 | | | | K_{DGcj} | g/g | Degradability of protein in of herbage in each digestibility class c | DMD + 0. | 01 | | | K_{HRj} | - | Relative height:mass ratio ("height factor") | 7.0 | | | | K_{SFj} | - | Parameter controlling the relationship between DMD and relative quality | 0.0 | | |