1 **10.1071/CP14009_AC**

2 © CSIRO 2014

3	Supplementary Material: Crop & Pasture Science, 2014, 65(12), 1267–1277.
4	
5	
6	CERES-Rice model-based simulations of climate change impacts on rice yields and
7	efficacy of adaptive options in Northeast China
8	Wenxiang Wu ^{A,C} , Qian Fang ^{A,B} , Quansheng Ge ^A , Mengzi Zhou ^B and Yumei Lin ^{A,B}

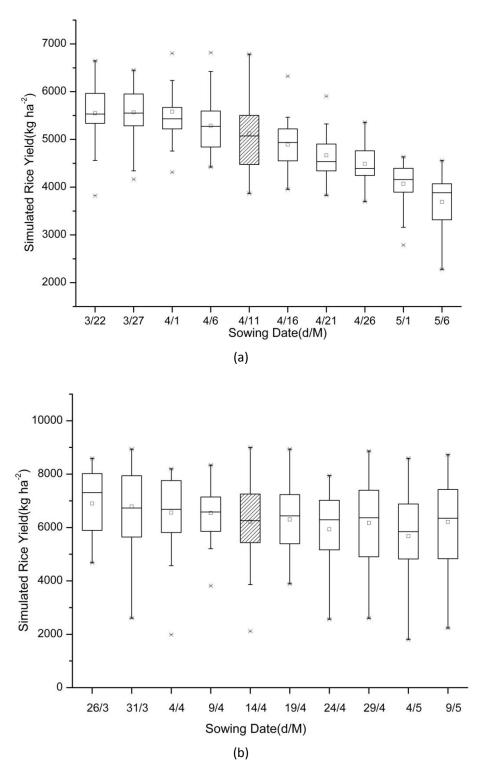
- 9 ^AInstitute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences,
- 10 11A Datun Road, Beijing 100101, China.
- ¹¹ ^BUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
- 12 ^CCorresponding author. Email: wuwx@igsnrr.ac.cn

1 S1. Relative references on impact assessments and adaptation simulation on rice production in China

	Crop model	Climate model	Study area	Sites	CO ₂	Adaptation options	Conclusion
					fertilisation		
Jin et al.	CERES-Rice	GCMs: GFDL,	South	9	Yes	New rice cultivars, different	Rainfed yields decreased 10~78% (GISS), 7~35% (GFDL) and
(1995)	V 3.0	GISS, UKMO	China			planting dates, changes in both	6~33% (UKMO) from the baseline yields
						cultivars and planting dates, and	
						improvements in irrigation	
						systems	
Lin et al.	CERES-Rice	PRECIS (A2	China		Yes		Without CO_2 fertilization, climate change could reduce rice
(2005)	v 3.5	and B2)				yield. CO ₂ fertilization effectively offsets yield decreases caus	
							by shorter growth duration due to higher temperatures.
Yao et al.	CERES-Rice	PRECIS (B2)	Middle and	8	Yes		Without the CO ₂ direct effect, frequency for low yield would
(2007)	v 4.0		South				increase and it reverses for high yield, and the variance for rice
			China				yield would increase. With the CO2 direct effect, rice yield
							increase in all selected sites.
Xiong et al.	CERES-Rice	GCMs HadCM	China	32	No		Rice yield in main rice production areas of China will reduce,
(2001)	V 3.5	2, ECHAM 4					especially in Northeast of China; if CO2 emission reduction

measures adopted, rice yield reduction wouldn't have major change; rice will show a trend of increasing yield in the Southwestern China.

Tao et al.	CERES-Rice	Probabilistic	China	6	Yes When CO ₂ fertilization effects are not considered, the rice yields				
(2008)	v 4.0	scenarios			would be reduced with 100% probability. Elevation CO ₂ could				
									increase rice yield 6.1%~31.6%.
Zhu & Jin	CERES-Rice	GCMs: GFDL,	Northern	19	Yes				Climate change would be favorable for soybean and rice
(2008)	v 4.0	GISS, UKMO	China						production, especially in the northern cold zone and eastern wet
									zone, but unfavorable for both maize and spring wheat. With
									increasing of CV, not only the yields reduced compared with the
						control, but also the yield stabilities for the rainfed crops.		control, but also the yield stabilities for the rainfed crops.	
Our study	CERES-Rice	PRECIS	Northeast	7	Yes Adjusting planting dates, Rice yield would decrease without considering CO ₂ fertiliz		Rice yield would decrease without considering CO ₂ fertilization		
	v 4.5		China		breeding new rice varieties and effects. CO ₂ fertilization effects may partly offset the ne		effects. CO ₂ fertilization effects may partly offset the negative		
					transplanting rice varieties impacts of clim		impacts of climate change on rice yields. Adverse impacts of		
						climate change on rice y		climate change on rice yields could be mitigated by advancing	
								planting dates, cultivating new rice cultivars with high thermal	
									requirements, and introducing mid-late maturing rice varieties.


1

S2.	Average changes in surface air temperature, precipitation, and CO ₂ concentrations under
SRE	S A2 and B2 scenarios in the Northeast China according to the simulation of PRECIS model
rela	tive to baseline values (1961~1990)

Periods		A2		B2			
	Temp	Rain	CO ₂	Temp	Rain	CO_2	
	(°C)	(%)	(ppm)	(°C)	(%)	(ppm)	
2020s (2011~2040)	1.4	3.3	440	0.9	3.7	429	
2050s (2041~2070)	2.6	7.0	559	1.5	7.0	492	
2080s (2071~2100)	3.9	12.9	721	2.0	10.2	561	

Coefficient	Definition						
P1	The thermal units required to complete the juvenile stage						
P2O	Critical photoperiods or the longest day length (in hours) at which the development						
	occurs at a maximum rate						
P2R	The extent to which phasic development leading to panicle initiation is delayed for						
	each hour increase in photoperiod above the critical photoperiod						
P5	The thermal units for the grain filling period						
G1	The number of spikelets per unit drymatter of the main culm						
G2	The single grain weight under ideal growing conditions						
G3	The relative tillering potential						
G4	The tolerance coefficient for the thermal environment						

S3. Cultivar-specific parameters in the DSSAT CERES-Rice model⁴⁶

S4. The simulated yield changes of rice varieties in different sowing dates in the 2080s under B2 scenario (a-Wuchang; b-Tonghua).