10.1071/CP17328_AC © CSIRO 2018

Supplementary Material: Crop & Pasture Science, 2018, 69, 506-514.

Potassium starvation affects biomass partitioning and sink-source responses in three sweet potato genotypes with contrasting potassium-use efficiency

Jidong Wang^{A,C,D}, Guopeng Zhu^B, Yue Dong^A, Hui Zhang^A, Zed Rengel^C, Yuchun Ai^{A,D}, and Yongchun Zhang^{A,D}

^AInstitute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Arable Land Conservation of Jiangsu

Province, Ministry of Agriculture, Nanjing, 210014 Jiangsu, China.

^BCollege of Horticulture and Landscape Architecture, Hainan University, Haikou, 572008 Hainan, China.

^cSchool of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.

Table S1. Dry matter biomass and K concentration in rooted single sweet potato leaves of different

Genotype	Dry matter biomass (g)			K concentration (g/kg)	
	Blade	Petiole	Root	Blade	Petiole
Ji22	0.29±0.01	0.11±0.01	Nd	20.7±0.6	31.5±0.8
Nan88	0.35 ± 0.02	0.15 ± 0.01	Nd	22.6±1.6	36.7±0.5
Xu28	0.28±0.01	0.12±0.01	Nd	24.4±1.1	34.3±0.6

genotypes before the commencement of differential K treatments

Nd = not determined (only very root tips were visible at the bottom of petiole cutting).