10.1071/CP22410 Crop & Pasture Science ## **Supplementary Material** ## Fate of fertiliser nitrogen in a ryegrass-kikuyu dairy pasture system Michael Fitzgerald^{A,*}, Deirdre Harvey^A, Johannes Friedl^B, David Rowlings^B, Jason Condon^{C,D}, and Warwick Dougherty^A ^ANSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2569, Australia. ^BInstitute for Future Environments, Queensland University of Technology, 2 George Street, Brisbane, Qld 4000, Australia. ^cNSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2560, Australia. ^DSchool of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. *Correspondence to: Michael Fitzgerald NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2569, Australia Email: michael.n15.fitzgerald@outlook.com Supplementary data A. Experiment 1: Total 15 N fertilizer recoveries in respective sample fractions (soil and roots) and percent 15 N recovery in soil of an initial application of 40 kg urea- 15 N ha⁻¹ made 21 days prior to cut 1 for pastures receiving urea applications of 120, 240 and 480 kg N ha⁻¹ year⁻¹ applied in 40 kg N ha⁻¹ applications (N120, N240, N480, respectively). Subsequent applications of 40 kg N ha⁻¹ made after cut 1 were, none for N120, once at cut 2 for N240, each cut for N480. Results between the N rates for each cut followed by the same letter are not significantly different at $P \le 0.05$. Standard errors are in brackets. 15 N = labelled nitrogen. | Treatment | N120 | N240 | N480 | |--|---------------------|----------------------|----------------------| | ¹⁵ N recovery in soil fraction (kg ha ⁻¹) | 16 (1) ^a | 22 (2) ^a | 19 (3) ^a | | ¹⁵ N recovery in roots (kg ha ⁻¹) | 9 (3) ^a | 7 (3) ^a | 11 (6) ^a | | ¹⁵ N recovered in soil fraction (%) | 40 (4) ^a | 55 (10) ^a | 48 (13) ^a | Supplementary data B. Experiment 2, Total soil mineral N (nitrate and ammonium) and nitrate kg N ha⁻¹ before the start (13/06/2018) and at the end (24/04/2019) of the experiment in pastures receiving urea applications of 120, 240 and 480 kg N ha⁻¹ year⁻¹ applied in 40 kg N ha⁻¹ applications (N120, N240, N480, respectively). Results between the N rates for sampling event followed by the same letter are not significantly different at $P \leq 0.05$. Standard errors are in brackets. | Treatment | N0 | N120 | N240 | N480 | | |--|-----------------------|----------------------|-----------------------|---------------------|--| | 13/06/2018 | | | | | | | Total mineral N (kg N ha ⁻¹) (0-70 cm) | 63 (12) ^a | 58 (8) ^a | 66 (2) ^a | 79 (4) ^a | | | Nitrate (kg N ha ⁻¹) (0-70 cm) | 23 (4) ^a | 24 (7) ^{ab} | 31 (3) ^b | 41 (1) ^b | | | Nitrate (kg N ha ⁻¹) (0-10 cm) | 12 (4) ^a | 12 (3) ^a | 21 (0.4) ^a | 33 (1) ^b | | | 24/04/2019 | | | | | | | Total mineral N (kg N ha ⁻¹) (0-70 cm) | 77 (7) ^a | 75 (2) ^a | 85 (11) ^a | 88 (5) ^a | | | Nitrate (kg N ha ⁻¹) (0-70 cm) | 16 (0.5) ^a | 19 (3) ^{ab} | 24 (2) ^b | 47 (5) ^c | | | Nitrate (kg N ha ⁻¹) (0-10 cm) | 7 (1) ^a | 9 (0.2) ^a | 12 (1) ^b | 34 (5) ^c | | | | | 1 | | 1 | | Supplementary data C. Experiment 2, Temporal additional dry matter of >5 cm plant shoots of pastures receiving urea applications of 120, 240 and 480 kg N ha⁻¹ year⁻¹ applied in 40 kg N ha⁻¹ applications (N120, N240, N480, respectively) during 25 July 2018 to 24 April 2019 Supplementary data D. Experiment 2, Marginal N response efficiency of >5 cm plant shoots of pastures receiving urea applications of 120, 240 and 480 kg N ha⁻¹ year⁻¹ applied in 40 kg N ha⁻¹ applications (N120, N240, N480, respectively) during 25 July 2018 to 24 April 2019. Due to the different frequencies of N application, marginal N responses could only be calculated after the fourth (15/10/2018), eight (31/01/2019) and twelfth (24/04/2019) pasture cuts. | Treatment | Cut Date | N fertiliser applied (kg
N ha ⁻¹) | Plant shoot >5 cm DM
yield (kg DM ha ⁻¹) at
75 % utilisation | Plant shoot >5 cm
response to
applied N (kg DM ha ⁻¹) | Marginal N
fertiliser applied (kg N
ha ⁻¹) | Marginal Plant shoot
>5 cm DM yield (kg
DM ha ⁻¹) | Marginal N response
efficiency (marginal kg
ha ⁻¹ increase in Plant
shoot >5 cm DM
per marginal kg N ha ⁻¹)
applied) | |-----------|------------|--|--|---|--|---|--| | N0 | 25/07/2018 | 40 | 93 | 0 | | | | | N120 | 25/07/2018 | 40 | 441 | 348 | | | | | N240 | 25/07/2018 | 40 | 426 | 332 | | | | | N480 | 25/07/2018 | 40 | 636 | 543 | | | | | N0 | 28/08/2018 | | 27 | 0 | | | | | N120 | 28/08/2018 | | 163 | 137 | | | | | N240 | 28/08/2018 | | 176 | 150 | | | | | N480 | 28/08/2018 | 40 | 691 | 665 | | | | | N0 | 20/09/2018 | | 148 | 0 | | | | | N120 | 20/09/2018 | | 257 | 109 | | | | | N240 | 20/09/2018 | 40 | 818 | 670 | | | | | N480 | 20/09/2018 | 40 | 1049 | 901 | | | | | N0 | 15/10/2018 | | 184 | 0 | | | | | N120 | 15/10/2018 | | 300 | 116 | 40 | 710 | 18 | | N240 | 15/10/2018 | | 571 | 386 | 80 | 829 | 10 | | N480 | 15/10/2018 | 40 | 1128 | 944 | 160 | 1515 | 9 | | N0 | 5/11/2018 | 40 | 313 | 0 | | | | | N120 | 5/11/2018 | 40 | 1063 | 750 | | | | | N240 | 5/11/2018 | 40 | 1187 | 874 | | | | | | N480 | 5/11/2018 | 40 | 1020 | 707 | | | | |---|------|------------|----|------|-----|-----|------|----| | | N0 | 3/12/2018 | | 346 | 0 | | | | | | N120 | 3/12/2018 | | 646 | 301 | | | | | | N240 | 3/12/2018 | | 669 | 324 | | | | | | N480 | 3/12/2018 | 40 | 1095 | 749 | | | | | | N0 | 9/01/2019 | | 406 | 0 | | | | | | N120 | 9/01/2019 | | 476 | 70 | | | | | | N240 | 9/01/2019 | 40 | 1238 | 832 | | | | | | N480 | 9/01/2019 | 40 | 1279 | 873 | | | | | | N0 | 31/01/2019 | | 272 | 0 | | | | | | N120 | 31/01/2019 | | 304 | 32 | 40 | 1154 | 29 | | | N240 | 31/01/2019 | | 397 | 125 | 80 | 1000 | 13 | | | N480 | 31/01/2019 | 40 | 849 | 577 | 160 | 752 | 5 | | | N0 | 20/02/2019 | 40 | 341 | 0 | | | | | | N120 | 20/02/2019 | 40 | 672 | 331 | | | | | | N240 | 20/02/2019 | 40 | 808 | 467 | | | | | | N480 | 20/02/2019 | 40 | 926 | 584 | | | | | | N0 | 12/03/2019 | | 272 | 0 | | | | | | N120 | 12/03/2019 | | 379 | 108 | | | | | | N240 | 12/03/2019 | | 487 | 215 | | | | | | N480 | 12/03/2019 | 40 | 978 | 706 | | | | | | N0 | 4/04/2019 | | 210 | 0 | | | | | | N120 | 4/04/2019 | | 274 | 64 | | | | | | N240 | 4/04/2019 | 40 | 669 | 460 | | | | | | N480 | 4/04/2019 | 40 | 718 | 508 | | | | | | N0 | 24/04/2019 | | 58 | 0 | | | | | | N120 | 24/04/2019 | | 73 | 15 | 40 | 517 | 13 | | | N240 | 24/04/2019 | | 175 | 117 | 80 | 741 | 9 | | | N480 | 24/04/2019 | 40 | 628 | 570 | 160 | 1110 | 7 | | _ | | | | | | | | |