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ABSTRACT 

Context. The depth-to a constraint determines how much of the soil profile, and the water it 
contains, can be accessed by plant roots. Information describing the impacts of soil constraints 
on available water capacity (AWC) and yield is important for farm management, but is rarely 
considered in a spatial context. Aims and methods. The depth-to three yield-limiting 
constraints (sodicity, salinity, and alkalinity) was mapped across ~80 000 ha in northern New 
South Wales, Australia using machine learning and digital soil mapping techniques. Soil AWC was 
calculated using soil data and pedotransfer functions, and water use efficiency equations were used 
to determine potential yield loss due to the presence of soil constraints. From this, the most-limiting 
constraint to yield was mapped. Key results. One or more constraints were found to be present 
across 54% of the study area in the upper 1.2 m of the soil profile, overall reducing the AWC by 
~50 mm and potential yield by an average of 1.1 t/ha for wheat and 0.8 bales/ha for cotton. Sodicity 
(Exchangeable Sodium Percentage > 15%) was identified as the most-limiting constraint to yield 
across the study area. Implications. The simplification of multiple sources of information 
into a single decision-making tool could prove valuable to growers and farm managers in 
managing soil constraints and understanding important interactions with available water and yield. 

Keywords: decision trees, digital soil mapping, pedotransfer function, precision agriculture, 
Random Forest, soil constraints, soil water, yield potential. 

Introduction 

Crop yields vary spatially, and season to season, in response to the interactions between 
climate, soil, and management (Filippi et al. 2019b). A large part of this variability is 
due to the heterogeneity of soil physical and chemical properties (Dang et al. 2010). 
Capturing and understanding this variability is important for informing management 
decisions to drive more profitable, and sustainable, cropping systems. 

Soil constraints are chemical or physical properties of the soil that may impede root 
growth and limit crop yields (van Gool et al. 2005). While approximately 10% of 
Australia’s land mass is considered arable (Looney 1991) and features many desirable 
physical and chemical soil characteristics, over three-quarters of these soils have one or 
more constraints in the surface and/or subsoil (Bot et al. 2000). The alluvial cotton and 
grain growing valleys of eastern Australia have highly productive soils, however 
agricultural production is still limited by the presence of soil constraints, with the most 
prevalent being high levels of soil salinity, sodicity, and alkalinity. 

Sodic soils can significantly limit plant growth and yields, causing dispersion, soil 
structural decline, and a reduction in the soils’ plant-available water capacity (AWC) 
(Hazelton and Murphy 2016; Isbell 2016). Soil salinity, measured by the electrical 
conductivity (EC) of the soil, imposes water stress via osmotic effects or high salt 
concentrations, negatively impacting the yields of most crops (Shaw 1997; Dang et al. 
2006; Hazelton and Murphy 2016). Extremely alkaline pH values restrict root growth 
via nutrient deficiencies and toxicities (Hazelton and Murphy 2016). The values at 
which soil sodicity, salinity, or alkalinity become constraining to crop growth and yield 
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varies due to the interactions between different soils and crop 
types, and environmental conditions such as rainfall and 
temperature. 

Through chemical or physical impediments, the presence 
of one or more constraints in the soil profile limits the 
ability of a crop to utilise stored soil moisture (Dang et al. 
2004). The depth-to a particular constraint determines how 
much of the soil profile, and the water it contains, can be 
accessed by roots (van Gool et al. 2005). It is possible to 
ameliorate or manage constraints to optimise crop yields. 
However, the efficacy and economic viability of such 
management decisions depends on the nature and impact of 
the constraint(s) (Bennett et al. 2015). If the depth-to a 
constraint is not known, resources such as fertiliser and 
irrigation may be applied unnecessarily, and therefore be 
wasted (Filippi et al. 2020a). Currently, information 
describing the distribution of several subsoil constraints, 
and the depth at which they occur, is not widely available 
to growers and farm managers. 

Many broadacre farmers now have access to vast amounts 
of publicly accessible and farm-sourced data (Bramley and 
Ouzman 2019), including proximal and remote sensing 
information, soil surveys, and yield monitoring data such as 
Landsat and MODIS imagery, gamma radiometric surveys, 
rainfall grids, and terrain attribute data. Advancements in 
digital soil mapping (DSM), computing technologies, and 
available covariates for mapping, are enabling the 
integration of information from across a range of spatial 
and temporal extents to inform management decisions (e.g. 
Dang et al. 2011). Despite these advancements however, 
much of this information is underutilised by growers and 
farm managers, and the translation of this knowledge into 
useful decision-making tools is limited. 

A suite of nation-wide maps for several soil properties is 
available, collectively known as the Soil and Landscape 
Grid of Australia (SLGA) (Grundy et al. 2015). Maps for 13 
soil properties, including EC for salinity and pH for acidity/ 
alkalinity, are provided at a 90 m spatial resolution. 
However, some agronomically-important constraints such 
as soil sodicity [i.e. Exchangeable Sodium Percentage (ESP)] 
are not included and predictions for some soil properties such 
as AWC may be imprecise as estimates are based on a small 
number of in-field measurements (Austin et al. 2019). Also, 
the six depth intervals, which are provided at the standards 
of the GlobalSoilMap project (i.e. 0–0.05, 0.05–0.15, 0.15– 
0.30, 0.30–0.60, 0.60–1.00, 1.00–2.00 m; Arrouays et al. 
2014), and coarse vertical resolutions in the subsoil (e.g. 
0.60–1.00 m) make it difficult to accurately determine the 
depth at which a constraint is reached. 

Several agronomically-important soil constraints have 
been mapped at the regional, farm, and field scale. Dang 
et al. (2010) mapped the spatial distribution of pH, EC, 
ESP, and chloride constraints across the northern grains 
region of Queensland, although the depth at which a 
constraint threshold was reached was not considered. In a 

study of soil salinity and sodicity constraints in a semi-arid 
irrigation region of southern Australia, Filippi et al. (2018a) 
produced individual maps for several depth increments 
down the soil profile to capture the vertical distribution of 
soil salinity and sodicity constraints. While informative, 
these maps are difficult for growers to interpret due to the 
overwhelming volume of information they provide. Leenaars 
et al. (2018) estimated and mapped the influence of a range of 
soil properties on rootzone depth, effectively mapping the 
depth-to root-constraining factors, across sub-Saharan 
Africa. In this study, the relatively coarse-resolution 
GlobalSoilMap standard depths were used and conservative 
assumptions were made about where constraints were 
being met, as the authors assumed that the upper depth of 
the shallowest layer a constraint was reached was the depth 
that a constraint was first reached. 

The depth-to individual soil constraints has successfully 
been mapped at the field and catchment- scales at a fine 
vertical resolution. Filippi et al. (2019a) and Filippi et al. 
(2020a) mapped the depth-to pH and ESP constraints, 
respectively, on a single map at a 1 cm vertical resolution. 
Both studies mapped individual soil constraints in 3D to 
successfully build a single decision-making tool that 
simplified volumes of data. However, the assessment of multi-
ple constraints in a single analysis and an assessment of their 
interactions with other soil processes was not considered. 
While Dang et al. (2010) and Sadras et al. (2003) modelled 
the relationship between soil constraints, AWC and yield at 
single points throughout north-eastern and southern 
Australia, respectively, these interactions were not considered 
spatially and the impacts of constraints on soil AWC was not 
quantified or mapped. 

This study aims to build upon previous research to map the 
depth-to multiple subsoil constraints and quantify their 
impact on AWC and potential cotton and wheat yield across 
multiple fields and farms. Different subsoil constraints at 
agronomically-important thresholds, specifically pH 1:5 
soil:water (pHH2O) > 9 for alkalinity, EC 1:5 soil:water 
(EC1:5) > 1 dS/m for salinity, and ESP > 15% for sodicity, 
were mapped across the Ashley Irrigation Area in the 
Gwydir Valley of northern NSW, and a fine-scale (30 m) 
map of the most-limiting constraint to yield was produced. 
The workflow developed in this study aims to integrate 
multiple sources of information about the interactions 
between subsoil constraints, AWC, and yield to provide a 
single decision-making tool for the on-farm management of 
subsoil constraints. 

Materials and methods 

The study area 

The study was conducted across a collection of farms to the 
north–west of the Ashley Irrigation Area (centered 
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approximately on latitude 29°20 045″S, longitude 149°49 07″ 
E), which is located north of Moree in the Gwydir Valley of 
northern NSW, Australia (Fig. 1). The total study area 
encompassed ~81 877 hectares (ha) and included grazing 
areas, and dryland and irrigated cropping fields. Irrigated 
cotton (Gossypium hirsutum) and grains including wheat 
(Triticum aestivum) are the most common crops grown in 
the study region. The climate of the region is semi-arid 
with long, hot summers, cool to mild winters and an annual 
mean temperature range between 26.9 and 12.6°C (Bureau 
of Meteorology (BOM) 2021). Rainfall is summer dominant, 
averaging 561.3 mm annually with a mean monthly 
maximum precipitation of 79.1 mm in January and minimum 
of 22.7 mm in April (Bureau of Meteorology (BOM) 2021). 
Grey and Brown Vertosols are the dominant soil types of 
the region according to the Australian Soil Classification 
(Isbell 2016). 

Soil datasets 

The soil data used in this study were obtained from two 
surveys conducted across the Ashley Irrigation Area (Fig. 1). 
Soil samples for Survey 1 were collected from a single field 
to the north–west of the Ashley Irrigation Area. A detailed 
description for the soil sampling design for Survey 1 can be 
found in Triantafilis et al. (2001). Briefly, soil samples 

were collected at 81 sites and subsampled at depth 
increments of 0–0.3, 0.3–0.6, 0.6–0.9, 0.9–1.2 m, resulting 
in a total of 405 individual samples available for Survey 1. 
Samples for Survey 2 were collected across the Ashley 
Irrigation Area from a mixture of soil cores subsampled at 
30 cm depth increments down to 1.2 m and via an 
electromagnetic (EM) induction survey. A total of 145 sites 
and 1156 individual samples were available for Survey 2. A 
detailed description of data collection, soil sampling and 
laboratory analysis for Survey 2 can be found in Zhao et al. 
(2019). In each of the surveys, measurements were taken 
for pHH2O, EC1:5, ESP, and particle size fractions (Triantafilis 
et al. 2001; Zhao et al. 2019). 

The number of sampling sites, and the number of and depth 
of sampling intervals varied between the two legacy soil 
surveys. Only soil data from the top 120 cm of the soil profile 
was used in this study. The total soil dataset included 1561 
samples from 226 individual sites (Fig. 1). 

Spatial covariates for modelling and mapping 

The covariates used for modelling and mapping consisted of 
satellite imagery, gamma radiometrics, a silica index map, 
elevation, and derived terrain attributes. These covariates 
were at different spatial and temporal resolutions. 

Survey 1 

Ashley irrigation area 

Survey 2 0 5 10 km 

Study area boundary 

Legacy soil surveys 

Fig. 1. Location of the Ashley Irrigation Area relative to New South Wales, and the location of legacy soil surveys across 
the Ashley Irrigation Area. 
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Landsat 7 satellite imagery was accessed through the 
Google Earth Engine (GEE) (Gorelick et al. 2017). All tier 1 
surface reflectance imagery from 1 January 2000 to 31 
December 2017 was accessed at a 30 m spatial resolution. 
Landsat 7 satellite imagery was chosen as it provides data 
over a longer time period compared to other products (e.g. 
Sentinel 2), and can be used to represent long-term trends 
using consistent data with a ~16-day revisit time. The 
banding error generated by the failure of the Scale Line 
Corrector (SLC) in the Landsat 7 imagery was negated as 
statistics were obtained from many images over the available 
time period (Filippi et al. 2020b). A cloud-masking filter was 
applied to all images to remove pixels affected by cloud cover, 
and the 5th, 50th and 95th percentile statistics were 
calculated for each pixel for the entire data time-series to 
reflect the full range of the data. The Landsat 7 imagery 
was used to derive Red Band and Normalised Difference 
Vegetation Index (NDVI) imagery. The 5th, 50th and 95th 
percentiles of the NDVI imagery were selected to reflect 
crop growth and vigour through time and to indicate patterns 
of production potential. The Red Band imagery (5th, 50th and 
95th percentiles) was used to represent topsoil colour. The 
timing of the remote sensing imagery and soil samples was 
not considered to be an issue as soil constraints are expected 
to remain relatively stable over time (Dang et al. 2011). The 
imagery was used to represent long-term trends to filter out 
more temporary, seasonal effects, rather than the surface 
reflectance at the time of sampling. 

A digital elevation model (DEM) was obtained from the 
ELVIS (ELeVation Information System) platform at a 30 m 
resolution (Department of Finance, Services and Innovation 
2020). Terrain attributes, derived from the Shuttle Radar 
Topography Mission (SRTM), were obtained from CSIRO’s 
Data Access Portal at a 30 m spatial resolution, including 
slope percent, degree, relief, topographic wetness index 
(TWI), multi-resolution ridge top flatness (MrRTF), multi-
resolution valley bottom flatness (MrVBF), aspect, plan and 
profile curvature, and topographic position index (TPI). 

Airborne gamma radiometric dose rate, uranium (Rad U), 
thorium (Rad Th) and potassium (Rad K) data, and their 
respective ratios (Rad U:Th, Rad U:K, Rad U2:Th, Rad Th: 
K), were obtained through the Geophysical Archive Data 
Delivery System (GADDS), Geoscience Australia, at a 
~100 m spatial resolution. All radiometric products were 
processed with low-pass filtering (Minty et al. 2009). 

A silica index map at a resolution of 1:250 000, as 
described by Gray et al. (2016), was also used as a covariate 
for modelling. This index map represents the silica content of 
a soils’ parent material, relating to soil texture and influencing 
other important soil properties. 

Spatial modelling of soil properties 

Across the study area, soil pH, EC, and ESP were modelled. 
These were considered the most agronomically-important 

subsoil constraints to irrigated and dryland cropping in the 
region. Clay, sand, and soil organic carbon (SOC) content 
was also mapped across the area as inputs for the 
pedotransfer function (PTF; Padarian Campusano 2014) to  
estimate AWC. All data analyses were performed in the 
open-source software R, ver. 4.0.4 (R Core Team 2021). 

Vertical resampling of soil data to 120 cm 
The number of sampled increments and depth intervals 

varied between the two legacy soil surveys. To overcome 
these inconsistencies, equal-area quadratic smoothing splines 
(Bishop et al. 1999), which apply a set of local quadratic 
functions to describe a smooth curve through a set of points, 
were used to standardise depth increments. Data for all soil 
properties were re-sampled to 1 cm depth increments to 
120 cm to give an estimate of the depth-to-constraint at a 
fine vertical resolution down the profile. 

Model validation 
The accuracy and quality of each Random Forest model 

was tested using leave-one-site-out cross validation 
(LOSOCV). The LOSOCV involved removing all data from 
one site, using this as the validation data, and leaving the 
remaining sites as a calibration dataset. This LOSOCV 
process was repeated for all sites (i.e. a total of 226 times). 
For each iteration, whole profiles were removed during the 
LOSOCV to ensure that soil samples from the same site 
were not used in both the calibration and validation datasets. 
Model quality was assessed using the Lin’s Concordance 
Correlation Coefficient (LCCC) (Lin 1989) and Root Mean 
Square Error (RMSE). 

Modelling soil properties 
At each of the 226 sites, the associated spatial covariates 

described above were extracted for the study area. The 
1 cm splined soil data for all soil properties were then stacked 
and combined with these covariates to create a single dataset. 
The mid-depth between the upper and lower depth of each 
splined interval (i.e. 0.5 cm for the 0–1 cm depth interval) 
was also calculated and added as a predictor variable. 

Random Forest models (Breiman 2001), which are a suite 
of decision trees, were used to build a relationship between 
each soil property and the predictor variables (Table 1). 
Random Forests were chosen due to their efficiency in 
terms of identifying relationships between the response and 
predictor variables that can be non-linear and involve 
interactions (Breiman 2001). Spatial covariates were selected 
based on their variable importance measure, discussed below, 
and the combination of covariates that resulted in the best 
model quality. All depths were modelled together instead of 
modelling each depth increment individually. 

For the Random Forest models, the ‘ranger’ package, ver. 
0.12.1 (Wright and Ziegler 2017), in the software R was 
used, which enables the fast implementation of Random 
Forest models that is well suited to high-dimensional data 
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Table 1. Spatial covariates used in the spatial models for the different soil properties. 

Data type Covariate pH EC ESP Clay Sand SOC 

Terrain attribute Mid-depth X X X X X X 

DEM X X X 

Aspect X X 

MrRTF X X X X X 

MrVBF X 

Plan curvature X X 

Profile curvature X X 

Slope degree X X X 

Slope percent X X X 

Slope relief X 

TWI X X X 

TPI mask X 

TPI class X 

Radiometrics Dose rate X X X X 

Potassium (Rad K) (%) X X X 

Thorium (Rad Th) (%) X X 

Uranium (Rad U) (%) X 

Thorium:Potassium (Rad Th:K) X X 

Uranium:Thorium (Rad U:Th) X X X X X 

Uranium:Potassium (Rad U:K) X X X X 

Uranium2:Thorium (Rad U2:Th) X X X X 

Satellite imagery NDVI 5th percentile (NDVI 5) X X X X 

NDVI 50th percentile (NDVI 50) X X X X 

NDVI 95th percentile (NDVI 95) X X X X 

RED 5th percentile (RED 5) X X X X 

RED 50th percentile (RED 50) X X X X 

RED 95th percentile (RED 95) X X X X X X 

Silica Silica index X 

‘X’ denotes covariates used in each model after variable selection. 
DEM, digital elevation model; MrRTF, multi-resolution ridge top flatness; MrVBF, multi-resolution valley bottom flatness; TWI, total wetness index; TPI, topographic 
position index; NDVI, Normalised Difference Vegetation Index; RED, Red Band. 

(Wright and Ziegler 2017). For each Random Forest model, 
the number of trees was set to 500 and the number of 
variables to possibly split at in each node (mtry) was set to 
the default option, which was the rounded-down square 
root of the number of variables within each model (Wright 
and Ziegler 2017). 

Variable importance 
The ‘permutation’ variable importance measure within the 

‘ranger’ package in R (ver. 0.12.1; Wright and Ziegler 2017) 
was used to assess the importance of predictor variables in 
each of the Random Forest models. The permutation variable 
importance approach is a measure of the importance of a 
variable on the final prediction, measured as the difference 
in prediction accuracy with and without the help of the 

predictor variable (Strobl et al. 2008; Wright et al. 2016). 
Covariates with a poor relationship to the response 
variable, in this case the relevant soil attributes, will have a 
variable importance close to zero. For more strongly related 
covariates, the variable importance score will increase and 
the prediction performance will be improved following the 
addition of the covariate to the model (Filippi et al. 2020a). 

Mapping the depth-to constraint 
To map the depth-to a constraint, a 30 m resolution spatial 

covariate grid of the Ashley Irrigation Area was created. All 
spatial covariates were then extracted onto this grid using 
the nearest neighbour method. The Random Forest models 
were used to predict the spatial distribution of pH, EC, and 
ESP constraints onto the spatial covariate grid. Predictions 
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were made at each 1 cm depth increment down to 120 cm, 
resulting in 120 maps for each soil constraint. All 120 maps 
were combined and stacked. From this, the depth-to which 
pH, EC, and ESP constraints were first reached in the soil 
profile were identified for each grid point by nominating a 
threshold value. The threshold values of pHH2O > 9, 
EC1:5 > dS/m, and ESP > 15% were chosen as they were 
determined to be the values for each constraint that 
significantly impeded root growth, resulting in negative 
impacts on crop growth and yield for wheat and cotton 
(Hazelton and Murphy 2016; Isbell 2016). This information 
was then mapped across the study area, showing the depth 
to each soil constraint threshold. 

Modelling available water capacity 

The AWC of the top 120 cm of the soil profile was calculated 
using PTFs from modelled clay and sand content, and bulk 
density derived from SOC (Padarian Campusano 2014). The 
PTFs were applied at each 1 cm depth increment down to 
120 cm to calculate field capacity (FC) and permanent 
wilting point (PWP), and AWC was calculated as the 
difference between the two for each layer. In the PTF, the 
FC was defined as the volumetric water content of an 
initially saturated soil following 2–3 days of drainage, also 
known as the drained upper limit (DUL; Veihmeyer and 
Hendrickson 1949). The PWP was defined as the volumetric 
water content remaining in the soil after a healthy crop has 
reached maturity in water-limited conditions with 
uninterrupted root development, also referred to as the 
crop lower limit (CLL; Hochman et al. 2001). 

Interactions between depth-to-constraint and 
available water capacity 

The interactions between the depth-to a constraint (pH, EC, 
and/or ESP) and AWC was assessed. For constraints 
reached within the top 30 cm of the soil profile, the depth-
to-constraint was fixed at 30 cm as constraints were assumed 
to be non-limiting to plant access to water above this depth. 
‘Unconstrained’ AWC was calculated as the AWC without 
considering the presence of constraints. The AWC for each 
1 cm soil layer was summed down to the depth any 
constraint was reached so that the ‘constrained’ AWC map 
excluded soil water beyond the depth-to a constraint. The 
total unavailable water due to the presence of constraints 
was calculated as the difference between unconstrained and 
constrained AWC. The unconstrained and constrained AWC, 
and unavailable water due to the presence of any constraint, 
was mapped across the study area. The impact of individual 
pH, EC, and ESP constraints on AWC was also calculated to 
estimate potential yield loss (see Results - Potential yield 
loss due to the presence of constraints) and most-limiting 
constraint to yield (see Results - Most-limiting constraint to 
yield) but are not presented. 

Potential yield loss due to the presence of 
constraints 

The map of unavailable water due to the presence of all 
constraints combined, and of each individual constraint 
(described above), was used to determine the potential lost 
yield for wheat and cotton crops. Water use efficiency 
(WUE) equations developed by French and Schultz (1984) 
and Roth et al. (2013) were used to estimate potential lost 
yield for wheat and cotton, respectively. The French and 
Schultz (1984) equation estimated WUE for wheat grain 
yield to be 20 kg/ha.mm water. The WUE equation 
developed by Roth et al. (2013) estimated cotton lint yield 
to be >3 kg/ha.mm water, so in this study 3 kg/ha.mm 
water was used as a conservative estimate of yield loss. 
For cotton, potential yield loss was presented in bales/ha 
as the standard industry measurement of lint yield is 
1 bale = 227 kg (Roth et al. 2013). A land-use map of NSW, 
obtained from the Office of Environment and Heritage 
(OEH), NSW Government (Office of Environment and 
Heritage – OEH 2017), was simplified into two categories – 
cropping (arable) and other. The maps of potential yield 
loss were masked to only include arable land across the 
study area. 

Most-limiting constraint 

The potential yield loss maps for the depth-to pH, EC, and ESP 
constraints were stacked and the greatest potential yield loss 
was calculated at each grid point. This value was assigned to 
the corresponding constraint (pH, EC, or ESP) and was 
determined to be the most-limiting constraint to yield. This 
was then mapped across the study area. 

Results 

Soil analytical results 

The range, mean, and median values were calculated for soil 
pH, EC, ESP, clay, sand, and SOC contents (Table 2). Soil pH 
was generally constant with depth (Fig. 2) with a range of 
pHH2O 6.60–10.44 and a mean of 8.58 (Table 2). On 

Table 2. Soil analytical results for soil properties of splined data used 
for modelling and mapping. 

Attribute/constraint Minimum Maximum Mean Median 

pHH2 O 6.60 10.44 8.58 8.62 

EC1:5 (dS/m) 0.01 3.30 0.60 0.27 

ESP (%) 0.01 43.97 10.99 10.47 

Clay (%) 3.26 80.88 53.97 55.54 

Sand (%) 3.87 67.16 19.56 16.41 

SOC (%) 0.18 1.06 0.47 0.45 
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Fig. 2. Boxplots of soil pHH2O (a), EC1:5 (b), ESP (c), clay (d), sand (e), and SOC (f ) attribute values with depth. Median values represented by 
solid black lines inside boxes, and the dashed vertical red lines indicate the threshold values deemed to be constraining to crop growth for pH, 
EC, and ESP (pHH2O 9, EC1:5 1 dS/m, ESP 15%). No data for SOC were available for a depth > 90 cm. 
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average, soil EC1:5 was 0.60 dS/m and increased with depth 
up to a value of 3.30 dS/m (Fig. 2, Table 2). Soil ESP 
averaged 10.99% across the study area and steadily increased 
with depth (Fig. 2, Table 2). Most samples were classified as 
medium-heavy clays, with a mean clay content of 53.97% that 
remained relatively constant down the profile (Fig. 2, Table 2). 
Sand content was steady with depth, averaging 19.56% (Fig. 2, 
Table 2). SOC content ranged between 0.18% and 1.06%, 
averaging 0.47% overall and decreased down the soil profile 
(Fig. 2, Table 2). 

Model quality 

After performing the LOSOCV by whole soil profiles, the 
LCCC and RMSE were used to assess model predictions. The 
quality statistics showed that clay content was predicted 
with greatest accuracy (LCCC = 0.64) (Table 3). Soil EC, 
sand, and SOC were predicted with comparable accuracy 
(LCCC = 0.60), followed by ESP (LCCC = 0.50). The model 
used to predict soil pH performed most poorly 
(LCCC = 0.38) (Table 3). 

Variable importance 

The top five most important covariates for each soil property 
and model are presented (Table 4). Generally, a mixture of 
covariates representing terrain attributes, radiometrics, and 
satellite imagery were important within each of the six 
models (Table 4). All available covariates were required to 
build the clay model (Table 1). Conversely, the pH model 

Table 3. Statistics of the quality of soil attribute models for the 
LOSOCV. 

Soil property LCCC RMSE 

pH 0.38 0.38 

EC 0.60 0.48 

ESP 0.50 5.30 

Clay 0.64 8.30 

Sand 0.60 8.81 

SOC 0.60 0.11 

Table 4. Ranked importance of the top five variables for each 
Random Forest model. 

pH EC ESP Clay Sand SOC 

Mid-depth Mid-depth Mid-depth Red 95 Red 95 Mid-depth 

Red 5 Red 95 Rad U:K Rad K Rad K Rad U2:Th 

NDVI 95 NDVI 95 Red 95 Rad Th:K Red 50 Rad U:Th 

Red 50 Rad U:K Rad Th:K Red 50 Rad Th:K Rad Th 

Red 95 MrRTF Rad K Rad U:K Rad U:K MrRTF 

was built using the least number of covariates, using 
predominately satellite imagery and terrain attributes 
(Tables 1 and 4). Overall, radiometrics and satellite imagery, 
including both NDVI and Red Band imagery, were the most 
important groups of covariates used within all models 
(Table 4). Mid-depth, MrRTF, Rad U:Th, and RED 95 
imagery were used consistently across each of the six 
models (Tables 1 and 4). 

Depth-to-constraint maps 

Overall, there was little similarity in the spatial distribution of 
the depth-to a constraint when comparing each of the soil 
constraint thresholds (i.e. pH, EC, and ESP) (Fig. 3). 
Approximately 54% of the study area was affected by at 
least one constraint in the top 120 cm of the soil profile. 
Less than 1% of the total study area was constrained by a 
pHH2O of 9 (Fig. 3, Table 5). Over 25% of soils were found 
to be constrained by an EC1:5 constraint of 1 dS/m 
somewhere in the top 120 cm of the soil profile, mostly 
between 30 and 90 cm (Fig. 3, Table 5). These were found 
throughout the east of the study area, as well as a smaller 
central region and areas to the north–west (Fig. 3). The 
map of the depth-to an ESP constraint of 15% showed a 
high degree of spatial variability and revealed that over 
35% of soils were constrained by sodicity somewhere in the 
top 120 cm of the soil profile (Fig. 3, Table 5). Most soils 
constrained by an ESP of 15% were within the top 30 cm of 
the soil profile and were widely distributed throughout the 
study area (Fig. 3, Table 5). 

Interactions between depth-to-constraint and 
available water capacity 

The interactions between the depth-to shallowest constraint 
(i.e. pH, EC, or ESP) and AWC was mapped across the study 
area. Without the presence of constraints, there was little 
spatial variability in AWC and much of the study area was 
predicted to have a moderate-to-high AWC that averaged 
161.89 mm (Fig. 4). As expected from the methodology, 
total constrained AWC averaged 111.15 mm across the 
study area and a lower AWC due to the presence of 
constraints was apparent across the north–east of the study 
area (Fig. 4). Soils with a higher constrained AWC were 
located predominately to the south of the study area and 
within narrow bands running throughout central regions 
(Fig. 4). Soil AWC with or without constraints ranged 
between 14.13 and 282.15 mm. The total unavailable water 
due to the presence of constraints was highly spatially 
variable and averaged 50.73 mm across the study area, 
ranging between 0 and 206.44 mm. More water was 
unavailable due to constraints in clearly defined fields to 
the far west and north–east of the study area, as well as a 
small central region (Fig. 4). 
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Fig. 3. The depth-to three constraint thresholds: pHH2O > 9, EC1:5 > 1 dS/m, ESP > 15%. 

Table 5. The depth (at 30 cm increments from 0 to 120 cm) to which predicted pH, EC, and ESP constraints at defined threshold values were first 
reached in the soil profile, and the proportion of the study area this represents, including total area constrained and unconstrained. 

Constraint Constraint threshold 0–30 cm 31–60 cm 61–90 cm 91–120 cm Constrained within 120 cm Unconstrained to 120 cm 

pHH2 O 9 0.06 0.16 0.58 0.08 0.89 99.11 

EC1:5 1.0 dS/m 0.01 12.76 12.25 0.09 25.10 74.89 

ESP 15% 23.68 0.12 9.06 4.17 36.98 62.97 

Potential yield loss due to the presence of 
constraints 

Based on calculations from WUE equations (French and 
Schultz 1984; Roth et al. 2013) using AWC estimates (Fig. 4), 
the distribution of potential yield losses for wheat and cotton 
due to the presence of all constraints (i.e. pH, EC, and 
ESP) across arable regions of the study area (Fig. 5) were  
spatially similar to the distribution of unavailable AWC due 
to the presence of constraints (Fig. 4). On average, potential 
yield loss due to all constraints for wheat was 1.1 tonnes 
(t)/ha and ranged from 0 to 3.8 t/ha (Table 6). For cotton, 
potential losses in lint yield averaged 0.8 bales/ha with a 
range between 0 and 2.5 bales/ha (Table 6). 

As for the depth-to-constraint maps (Fig. 3), there was little 
similarity in the spatial distribution of yield losses due to 
the presence of each individual pH, EC, and ESP constraint 

(Fig. 5). Therefore, the greatest potential yield losses were 
predicted to be attributed to an ESP constraint of 15%, 
averaging 0.4 t/ha for wheat (range 0–3.8 t/ha) and 
0.8 bales/ha for cotton (range 0–2.5 bales/ha) (Table 5). 
Maximum potential yield losses due to an EC1:5 constraint 
of 1 dS/m were 3.5 t/ha for wheat and 2.3 bales/ha for 
cotton, averaging 0.4 t/ha and 0.3 t/ha, respectively (Table 
5). Potential yield losses due to a pHH2O constraint of 9 
ranged between 0 and 3.5 t/ha for wheat and 
0–2.3 bales/ha for cotton, however these impacts were 
negligible as <1% of the total study area was constrained 
(Table 5, Fig. 5). 

Most-limiting constraint to yield 

The most-limiting constraints to yield were identified from 
the potential yield loss maps, and the predictions were 
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Fig. 4. Unconstrained and constrained AWC, and total unavailable water due to the presence of all constraints within the top 120 cm of the 
soil profile. 

mapped across arable regions of the study area (Fig. 6). Over 
36% of arable soils were most-limited by a sodicity constraint 
(ESP > 15%), followed by salinity (EC1:5 1 dS/m) which 
affected approximately 23% of arable soils (Fig. 6). Less than 
1% of arable soils were most-limited by an alkalinity 
constraint (pHH2O > 9) (Fig. 6). Yields across the remaining 
38% of arable land were not limited by any constraint 
within the top 120 cm of the soil profile (Fig. 6). 

Discussion 

Model quality and modelling approach 

Random Forest models were developed to predict soil 
properties in 3D. As whole soil profiles were removed from 
the model during LOSOCV, potential interactions with other 
samples at different depths from the same site were 
eliminated. A comparison of LOSOCV techniques performed 
by Filippi et al. (2020a) found that validating models with 
splined data, as was applied in this study, is a robust 
approach that is comparable with using un-splined data, 
therefore giving us confidence in our predictions and model 
quality assessment used here. 

Various soil properties have been modelled on comparable 
soils across northern NSW. Soil ESP was predicted with 

moderate accuracy and model performance in the current 
study was similar to the Random Forest-based estimates 
made by Filippi et al. (2020a) at the catchment scale. The 
quality of predictions for pH in this study were better than 
those obtained by Ma et al. (2021) across the Edgeroi 
District but poorer than those from Filippi et al. (2019a). 
The substantially lower sampling density here and uneven 
distribution of samples across the study area may explain 
the poorer model performance, with over 35% of all legacy 
soil survey samples obtained from a single field in the 
north–west of the study area (i.e. Survey 1, Fig. 1) 
potentially contributing to a more accurate prediction of 
soil properties in this region compared to the south of the 
study area. This is a common problem when using legacy 
soil data, as new data are expensive to obtain. 

Good predictions were obtained for clay and were 
comparable to estimates across the Cox’s River catchment 
made by Bishop et al. (2015) and better than those 
obtained by Ma et al. (2021) across the Edgeroi District, 
both located just south of the Ashley Irrigation Area. 
Similar model quality statistics were obtained by Filippi 
et al. (2018b) when estimating soil EC across similar 
cotton-growing soils in southern NSW. Predictions of SOC 
content made across the Edgeroi District by Malone et al. 
(2009) and Ma et al. (2021) were both poorer than those 
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All constraints pH  > 9 

Fig. 5. Potential yield loss due to all constraints, and due to the presence of individual constraints pH > 9, EC1:5 > 1 dS/m, and ESP > 15% for 
cotton and wheat on arable land. 

obtained in this study, as were predictions obtained for the 
sand particle size fraction by Buchanan et al. (2012) further 
west across the Bourke Irrigation District. 

Table 6. Potential yield loss due to the presence of pH, EC, and/or 
ESP constraints for wheat and cotton calculated using WUE equations 
developed by French and Schultz (1984) and Roth et al. (2013), 
respectively. 

Constraint(s) Crop Min Max Mean Median 

All Wheat 0 3.8 1.1 1.3 

Cotton 0 2.5 0.8 0.9 

pHH2 O 9 Wheat 

Cotton 

0 

0 

3.5 

2.3 

0 

0 

0 

0 

EC1:5 1.0 dS/m Wheat 

Cotton 

0 

0 

3.5 

2.3 

0.4 

0.3 

0 

0 

ESP 15% Wheat 0 3.8 0.8 0 

Cotton 0 2.5 0.5 0 

Wheat yields are in t/ha and cotton yields are in bales/ha. 

The most important covariate for soil pH, EC, ESP, and SOC 
models was mid-depth, which is unsurprising considering 
these properties were most variable with depth (Fig. 2). 
The relatively high importance of radiometric covariates 
within almost all models makes sense, as these factors 
provide information about soil parent material and relate to 
soil forming processes (Bishop et al. 2015). 

Depth-to-constraint 

While subsoil alkalinity is considered an inherent property of 
the alluvial cotton-growing valleys of northern NSW, less than 
1% of the study area was constrained by alkalinity within the 
top 120 cm of the soil profile. This is substantially less than 
predictions across the Namoi Valley, located south of the 
Gwydir Valley (Filippi et al. 2019a), but is not unexpected 
as soil pH values for the Namoi Valley area are higher than 
those for the lower Gwydir Valley (Singh et al. 2003). 

Both soil EC and ESP values increased with depth and EC 
threshold limits were mostly exceeded in the subsoil between 
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Fig. 6. Identification of the most-limiting constraints to yield for arable land across the study area. 

30 and 60 cm (Fig. 3), which is typical of soils across the plains 
of northern NSW (Dang et al. 2006). The distribution of 
salinity and sodicity constraints across the study area were 
largely contrasting, despite soil salinity and sodicity 
constraints being commonly found together across the 
shrink-swell clay soils of northern NSW (Dang et al. 2006). 
The majority of soils across Australia’s cotton growing 
regions are considered sodic (Northcote and Srene 1972; 
Naidu et al. 1995), and similar proportions of an ESP 
constraint of 15% have been found across the Namoi 
Catchment (Filippi et al. 2020a). 

This study mapped the depth-to fixed constraint threshold 
values for pH, EC, and ESP based on known agronomic 
impacts to yield potential (Hazelton and Murphy 2016; 
Isbell 2016). While fixed constraint thresholds are useful in 
theory, in practice they do not reflect the complex 
interactions between different soil properties or the different 
conditions under which potential yield may be constrained. 
This study assumed that the presence of a constraint at a 
fixed threshold value was an immediate barrier to root 
exploration down the profile (van Gool et al. 2005). 
However, a plants’ physical response to a soil constraint is 
not defined by a set value, and the magnitude of impact on 
root growth may vary for a range of constraint values. The 
use of ‘fuzzy’ boundaries that capture a range of potentially 
constraining threshold values and have relative impacts on 
root growth (and therefore yield), as opposed to rigid limits, 
may be more appropriate in future studies to capture the 
variation in response by different crops. Likewise, not all 
crops may incur a growth or yield penalty at the same 
threshold value, and future work should consider different 

constraint threshold limits for a range of crop types and 
growth conditions. 

Interactions between depth-to-constraint 
and AWC 

Uncertainty about the availability of water is considered one 
of the most significant limitations to irrigated and dryland 
crop production in Australia (Roth et al. 2013). Estimates of 
AWC made in this study were comparable with others 
across northern NSW soils (Cull et al. 1981; Malone et al. 
2009). However, these estimates were either limited to single 
points (Cull et al. 1981), or did not explicitly consider the 
influence of constraints on AWC (Cull et al. 1981; Malone 
et al. 2009). Sadras et al. (2003) and Dang et al. (2010) 
developed conceptual models to estimate plant available 
water and plant available water capacity, respectively, 
considering the influence of soil constraints. However, these 
relationships were derived from point-based observations and 
were not considered spatially. 

Soil AWC has been mapped across large spatial extents and 
at the sub-field scale. Based on in-field observations of DUL 
and CLL, Padarian et al. (2014) used DSM techniques to 
map AWC across the Australian wheat belt. However, direct 
measurements of FC/DUL and PWP/CLL are time-consuming 
and expensive (Rab et al. 2009). The application of PTFs 
enables the estimation of soil properties using more readily 
available or more easily measured soil information that can 
provide more accurate predictions of AWC compared to 
DSM techniques (Austin et al. 2019). Both Rab et al. (2009) 
and Malone et al. (2009) applied PTFs to estimate AWC at 
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the district level, however neither study considered, 
quantified, or mapped the impact of constraints on AWC. 

The PTFs applied in this study to estimate DUL and CLL for 
AWC were generated and calibrated in an Australian context 
on similar (predominately Vertosol) soils (Padarian 
Campusano 2014). Thus, the AWC estimates produced here 
(Fig. 4) address precautions around model transportability 
(Padarian Campusano 2014), giving us confidence in our 
estimations. 

Lost yield potential 

Many agricultural soils across Australia feature physical or 
chemical characteristics that constrain crop production (Bot 
et al. 2000). Although interactions between subsoil 
constraints impact yields in different ways, as discussed, the 
deeper a constraint is reached in the soil, the higher crop 
yields will be (Filippi et al. 2019a, 2020a). Dalal et al. 
(2002) showed that a decrease in rooting depth from 105 
to 45 cm resulted in a yield reduction for wheat from 3.5 to 
1.5 t/ha across southern Queensland cropping soils. 
However, we cannot accurately state the degree to which 
subsoil constraints reduce AWC across the region without 
appropriate validation with observed yield data. Future 
work should validate potential crop yield losses with real 
yield maps to assess the validity of WUE equation-based 
estimates of constrained AWC and potentially identify other 
drivers of yield variability. 

The interactions between subsoil constraints and yield 
have been extensively studied. Filippi et al. (2019a) and 
Filippi et al. (2020a) mapped the depth-to pH and ESP 
constraints, respectively, and assessed their impact on crop 
yields at the sub-field scale. While both studies found clear 
relationships between the depth-to a constraint and crop 
yield, the impact of constraints on AWC was not quantified 
and much of the available literature does not consider these 
interactions with yield. Although the conceptual model 
developed by Dang et al. (2010) considered realistic yield 
potential as a function of the interactions between constraints 
and AWC, the realistic yield potential was not explicitly 
calculated, and this relationship was also not considered 
spatially. 

The map of unavailable water due to the presence of 
constraints produced in this study was integrated with WUE 
equations developed from French and Schultz (1984) and 
Roth et al. (2013) to estimate the potential yield loss due to 
individual and all constraints. Potential yield loss for cotton 
was lower than for wheat, although this is to be expected as 
cotton has a lower WUE of the harvestable component 
compared to wheat. Although similar constraint thresholds 
were considered for both cotton and wheat in this study, it 
should be acknowledged that these theoretical threshold 
values may not capture the full extent to which constraints 
impact AWC for different crop species. 

In their simplest form, the French and Schultz (1984) and 
Roth et al. (2013) WUE equations do not account for the 
influence of soil factors on available water, nor do they 
consider the timing of rainfall, length of growing season, or 
variation in soil evaporation. This study attempted to 
account for interactions between soil constraints and AWC, 
while still maintaining the original simplicity of the WUE 
frameworks. By calculating potential crop yield with 
respect to constraint-limited AWC, the impact of subsoil 
constraints on yield and the soil environment has been 
accounted for and provides a more simplistic estimation of 
the extent of these interactions. Future work should use soil 
water balance models, for example that described by 
Wimalathunge and Bishop 2019 to assess the true impact of 
reduced AWC on yield rather than assuming lost AWC 
equals lost water over the entire season. 

Practical applications 

The effective amelioration and management of subsoil 
constraints relies on useful decision-making tools. Mapping 
the spatial distribution of subsoil constraints in 3D is not a 
novel approach, however, the integration of this information 
with PTFs to estimate AWC has not been explored in detail. 
This study explored a potential new workflow for identifying 
the most-limiting constraint to yield by considering the 
interactions between depth-to subsoil constraints, AWC, 
and potential crop yield. This single map presents these 
combined interactive effects and simplifies multiple sources 
of information into a single decision-making tool. This can 
then be used by growers and farm managers to guide the 
targeted amelioration or management of soil constraints. 

The identification of limiting constraints to yield has long 
been a goal in research. Shatar and McBratney (2004) applied 
the boundary-line analysis (BLA) method to compare actual 
and potential yields and identify the most-limiting 
constraints to yield at the field scale. While the map produced 
by Shatar and McBratney (2004) is visually similar to the map 
identifying the most-limiting constraint produced in this 
study (Fig. 6), a BLA requires high-quality and accurate 
yield and soil information that is often not attainable by 
growers on-farm. Further, many BLA studies fail to consider 
the depth at which constraints were reached in the soil 
profile, nor do they consider the impact of constraints 
on AWC. 

From this study, it is evident that ameliorating or managing 
subsoil sodicity across much of the study area should be a 
priority, while particular fields to the north should be 
managed to address salinity constraints (Fig. 6). While 
chemical and mechanical amelioration strategies, such as 
the application of gypsum in combination with cultivation, 
have been shown to be effective in treating soil sodicity 
(Page et al. 2018), understanding the depth-to and nature 
of a constraint is important for determining the feasibility 
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of amelioration strategies and minimising unnecessary 
expenditure on resources. 

Conclusions 

Over 54% of the study area was constrained by one or more 
soil constraints (i.e. pH, EC, or ESP) somewhere in the top 
120 cm of the soil profile. Soil sodicity (ESP > 15%) was 
identified as the most-limiting constraint to yield compared 
to salinity (EC1:5 1 dS/m) and alkalinity (pHH2O 9). Total 
unconstrained AWC averaged 161.9 mm across the study 
area and total constrained AWC averaged 111.2 mm, with 
constraints reducing total AWC and soil water available for 
plant uptake by an average of 50.7 mm. Through WUE 
equations, potential yield loss was estimated to average 
1.1 t/ha for wheat and 0.8 bales/ha for cotton, due to the 
presence of all constraints. 

The workflow developed in this study effectively 
demonstrates the development of a useful decision-making 
tool to identify the most-limiting constraint to yield on a 
single map using readily available soil information, DSM 
techniques, and PTFs to better understand the impact of 
subsoil constraints. A map of the most-limiting constraint to 
yield, and its use in conjunction with additional 
independent information such as maps of the depth-to a 
constraint, is potentially useful for guiding decision-making 
for the amelioration and management of subsoil constraints, 
and the feasibility of such decisions. This work should be 
extended by validating potential yield loss estimations with 
farm-sourced yield data. Future work should consider 
including a greater range of threshold values for constraints 
and incorporating a soil water balance model into the 
framework. 
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