Index

acidification, ocean 9
ACT and climate change 39
adaptation
 and agriculture 85–95
 attitudes to 67
 in Australia 60–2
Australian agriculture 86–8
and climate change 85–95, 137
coping with uncertainty 89–90
incremental 66
opportunities 70–2, 90–2
outcomes 68
pathways to 68–9
preparing for 65–6, 92–4
priorities 90–2
transformational 66
types of 63–4
aerosols 32
afforestation 98, 100–1
agricultural systems and adaptation 91
agriculture 54–5, 86–8, 98–9
Australian Treasury Carbon Pollution
 Reduction Scheme 112

behaviour, changing individual 130–1
biochar 103–5
biofuels 123
biomass energy 120
biosecurity and agricultural adaptation 91
biotechnology and agricultural adaptation 90
budgets for other greenhouse gases 28–9
carbon
 mobilisation from disturbed pools 32
 soil organic 103–5
carbon capture and storage (CCS) 121–2
carbon dioxide (CO₂)
 budget (Earth's atmosphere) 23–6
 emissions from fossil fuels, trends in 26–8
 sinks, land and ocean 32
chlorofluorocarbons (CFCs) 15, 29
climate
 Earth's 15–20
 in the future and greenhouse gases 30–2
 projections for Australia 36–43
climate change
 abrupt changes 43
 and adaptation 85–95, 137
 attribution of observed 6–7
 Australia's vulnerability 46, 137
 regional 39–42
 role of humans 6, 7, 136
 tipping points 43
climate change impacts 45–56
 across Australia's economy and
 environment 48
 agriculture 54–5
 and climate extremes 47–8
 coastal development 50–1
 forestry 54–5
 health 56
 impacts 45–56
 infrastructure 52–3
 natural ecosystems 51–2
 water security 48–9
climate extremes 47–8
climate projections for Australia 36–43
 abrupt changes and tipping points 43
 rainfall 38
 regional 39–42
 temperature 37
climate system, feedbacks in the 21–2
costal development 50–1
costal inundation 79–83
cropping emissions 107
deforestation 15, 24, 25, 99, 102
distributed power generation 117–18
drought 4, 5, 6–7, 46, 47, 54, 63, 66, 70, 89,
 90, 92, 130, 135

ecosystems
 native 102–3
 natural 51–2
electricity
 consumption, household 130–1
 generation 80, 110, 113, 115, 118, 121
 electrification of road transport 124–5
emissions
 from Australian land use 98–9
cropping 107
energy, fossil fuel 121–2
energy demand
 Australian attitudes 128–9
 changing individual behaviour 130–1
 reducing 117, 127–33
 target audiences and processes 132
energy efficiency 117
energy technologies 117–22
 Australian attitudes 128–9
Energymark 130, 132
extreme events 42–3

forestry 54–5
fossil fuel energy 121–2
fossil fuels, trends in carbon dioxide emissions from 26–8

gas 122
gasification 121

<table>
<thead>
<tr>
<th>feedbacks</th>
<th>cycle</th>
<th>cycles</th>
<th>cycles</th>
<th>cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>glacial cycles, feedbacks in 22</td>
</tr>
</tbody>
</table>

global warming 4, 7, 21, 30, 36, 46, 48, 74, 76, 78, 128, 136
greenhouse gases (GHGs)
 afforestation 100–1
 and agricultural activity 87
 budgets 28–9
 and climate in the future 30–2
 and cropping 107
 and the Earth’s climate 15–20
 emissions 98–9, 110–11, 130–1
 and land use, Australian 98–9
 and livestock 98, 99, 105–6
 mitigation 97–108
 and native ecosystems 102–3
 savanna burning 98, 99
 and soil organic carbon 103–5

health and climate change 56
heatwaves 52, 56, 74–8
hot fractured rocks energy 120
hybrid technologies 122
hydro power 120
hydrofluorocarbons (HFCs) 15, 29
hydrogen fuel 125

<table>
<thead>
<tr>
<th>information delivery and agricultural adaptation</th>
<th>information delivery and agricultural adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>infrastructure 52–3</td>
<td>infrastructure 52–3</td>
</tr>
<tr>
<td>innovation, role of 113–16</td>
<td>innovation, role of 113–16</td>
</tr>
<tr>
<td>irrigation efficiency and agricultural adaptation</td>
<td>irrigation efficiency and agricultural adaptation</td>
</tr>
<tr>
<td>land clearing 98</td>
<td>land clearing 98</td>
</tr>
</tbody>
</table>

land use, reducing emissions from
 Australian 98–9

methane (CH₄) 15, 17, 19, 21, 22, 28–9, 32
 livestock 98, 105–6

Models
 Coupled Global Climate 6
 Earth System 6
 Global Climate 36

native ecosystems 102–3
natural ecosystems 51–2
New South Wales and climate change 39
nitrous oxide (N₂O) 15, 17, 19, 29, 107
nuclear energy 121

ocean observations
 acidification 9
 salinity 9
 sea level 10–13
 temperature 8

ocean energy 120
oil prices 112–13
organic carbon 103–5
oxyfuel combustion 121
ozone (O₃) 6, 7, 15, 17, 18, 29, 56

photovoltaic (PV) technologies 118
plant nutrition and agricultural adaptation 90
post-combustion capture 121
power generation 117–18
 biomass energy 120
 demand reduction 117
 distribution 117–18
 energy efficiency 117
 hot fractured rocks 120
 hydro 120
 nuclear energy 121
 ocean energy 120
 photovoltaic (PV) technologies 118
 renewables 118–21
 solar 118, 129
 solar thermal 118–19
 wind 119, 129

Queensland and climate change
 south-east 40
 northern coast 41

rainfall
 Australian 4–5
 projections 38
regional climate changes 39–42
renewable energy 118–21

salinity, ocean 9
savanna, tropical 54, 97, 98, 99, 102
sea level, observations 10–13
sea surface temperature, Australian 4
soil conservation and agricultural adaptation 91
soil organic carbon 103–5
solar power 118, 129
solar thermal technologies 118–19
South Australia and climate change 40

Tasmania and climate change 41

technologies
energy 117–22
transport 122–5
temperature
global average 2
ocean observations 8

projections 37
sea surface, Australian 4
terrestrial, Australian 2–3
terrestrial temperature, Australian 2–3
tipping points and climate change 43
Top End and climate change 42
transport
biofuels 123
fuels 123–5
hydrogen fuel 125
electricity 124–5
technologies 122–5

Victoria and climate change 39

water conservation and agricultural adaptation 91
water security 48–9
Western Australia, south-west and climate change 41
wind power 119, 129