Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Articles citing this paper

The Influence of Sample Preparation on Observed Particle Size Distributions for Contrasting Soil Suspensions using Flow Field-Flow Fractionation

Laura J. Gimbert A B , Philip M. Haygarth B , Ronald Beckett C and Paul J. Worsfold A D
+ Author Affiliations
- Author Affiliations

A School of Earth, Ocean and Environmental Sciences, University of Plymouth, Plymouth, Devon, PL4 8AA, UK.

B Cross Institute Programme for Sustainable Soil Function (SoilCIP), Institute of Grassland and Environmental Research (IGER), North Wyke Research Station, Okehampton, Devon, EX20 2SB, UK.

C Water Studies Centre, Department of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

D Corresponding author. Email: pworsfold@plymouth.ac.uk

Environmental Chemistry 3(3) 184-191 https://doi.org/10.1071/EN06029
Submitted: 29 May 2006  Accepted: 8 June 2006   Published: 10 July 2006



40 articles found in Crossref database.

Analysis and Risk of Nanomaterials in Environmental and Food Samples (2012)
Farré Marinella, Barceló Damià
Nanomaterials in the environment: Behavior, fate, bioavailability, and effects
Klaine Stephen J., Alvarez Pedro J. J., Batley Graeme E., Fernandes Teresa F., Handy Richard D., Lyon Delina Y., Mahendra Shaily, McLaughlin Michael J., Lead Jamie R.
Environmental Toxicology and Chemistry. 2008 27(9). p.1825
Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: Size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS
Bolea E., Laborda F., Castillo J.R.
Analytica Chimica Acta. 2010 661(2). p.206
Ion exchange technique (IET) to characterise Ag+ exposure in soil extracts contaminated with engineered silver nanoparticles
Schwertfeger Dina, Velicogna Jessica, Jesmer Alexander, McShane Heather, Scroggins Richard, Princz Juliska
Environmental Chemistry. 2017 14(2). p.123
Development of a sequential extraction and speciation procedure for assessing the mobility and fractionation of metal nanoparticles in soils
Choleva Tatiana G., Tsogas George Z., Vlessidis Athanasios G., Giokas Dimosthenis L.
Environmental Pollution. 2020 263 p.114407
Behavior and characterization of titanium dioxide and silver nanoparticles in soils
Pachapur Vinayak Laxman, Dalila Larios A., Cledón Maximiliano, Brar Satinder Kaur, Verma Mausam, Surampalli R.Y.
Science of The Total Environment. 2016 563-564 p.933
Quantitative analysis and characterization of PtNPs in road dust based on ultrasonic probe assisted extraction and single particle inductively coupled plasma mass spectrometry
Sánchez-Cachero Armando, Fariñas Nuria Rodríguez, Jiménez-Moreno María, Martín-Doimeadios Rosa Carmen Rodríguez
Spectrochimica Acta Part B: Atomic Spectroscopy. 2023 203 p.106665
Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation
Gimbert Laura J., Hamon Rebecca E., Casey Phil S., Worsfold Paul J.
Environmental Chemistry. 2007 4(1). p.8
Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment
Farré Marinella, Sanchís Josep, Barceló Damià
TrAC Trends in Analytical Chemistry. 2011 30(3). p.517
Separation and characterization of environmental nano- and submicron particles
Ermolin Mikhail S., Fedotov Petr S.
Reviews in Analytical Chemistry. 2016 35(4). p.185
Study of the Mobility of Cerium Oxide Nanoparticles in Soil Using Dynamic Extraction in a Microcolumn and a Rotating Coiled Column
Ermolin M. S., Fedyunina N. N., Karandashev V. K., Fedotov P. S.
Journal of Analytical Chemistry. 2019 74(8). p.825
Extracting Metallic Nanoparticles from Soils for Quantitative Analysis: Method Development Using Engineered Silver Nanoparticles and SP-ICP-MS
Schwertfeger D. M., Velicogna Jessica R., Jesmer Alexander H., Saatcioglu Selin, McShane Heather, Scroggins Richard P., Princz Juliska I.
Analytical Chemistry. 2017 89(4). p.2505
Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products
Krystek Petra, Ulrich Andrea, Garcia Carmen Cecilia, Manohar Srirang, Ritsema Rob
Journal of Analytical Atomic Spectrometry. 2011 26(9). p.1701
Trends in the sample preparation and analysis of nanomaterials as environmental contaminants
Saleh Tawfik A.
Trends in Environmental Analytical Chemistry. 2020 28 p.e00101
Solid phase extraction materials as a key for improving the accuracy of silver nanoparticle characterization with single-particle inductively coupled plasma mass spectrometry in natural waters through dissolved silver removal
Kinnunen Virva, Perämäki Siiri, Matilainen Rose
Spectrochimica Acta Part B: Atomic Spectroscopy. 2022 193 p.106431
The Key Role of Environmental Colloids/Nanoparticles for the Sustainability of Life
Buffle J.
Environmental Chemistry. 2006 3(3). p.155
Ecotoxicity and analysis of nanomaterials in the aquatic environment
Farré Marinella, Gajda-Schrantz Krisztina, Kantiani Lina, Barceló Damià
Analytical and Bioanalytical Chemistry. 2009 393(1). p.81
Analytical chemistry of metallic nanoparticles in natural environments
Silva Bianca Ferreira da, Pérez Sandra, Gardinalli Piero, Singhal R.K., Mozeto Antonio A., Barceló Damià
TrAC Trends in Analytical Chemistry. 2011 30(3). p.528
Analysis and Risk of Nanomaterials in Environmental and Food Samples (2012)
Sanchís Josep, Farré Marinella, Barceló Damià
Engineered nanomaterials in soil: Problems in assessing their effect on living organisms
Terekhova V. A., Gladkova M. M.
Eurasian Soil Science. 2013 46(12). p.1203
Study of the size-based environmental availability of metals associated to natural organic matter by stable isotope exchange and quadrupole inductively coupled plasma mass spectrometry coupled to asymmetrical flow field flow fractionation
Laborda F., Ruiz-Beguería S., Bolea E., Castillo J.R.
Journal of Chromatography A. 2011 1218(27). p.4199
Monitoring nanoparticles in the environment
Simonet B. M., Valcárcel M.
Analytical and Bioanalytical Chemistry. 2009 393(1). p.17
Nanoscience and Plant–Soil Systems (2017)
Terekhova Vera, Gladkova Marina, Milanovskiy Eugeny, Kydralieva Kamila
Study on water-dispersible colloids in saline-alkali soils by atomic force microscopy and spectrometric methods
Liu Zhiguo, Xu Fengjie, Zu Yuangang, Meng Ronghua, Wang Wenjie
Microscopy Research and Technique. 2016 79(6). p.525
Sample Preparation with Nanomaterials (2021)
Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications
Ju-Nam Yon, Lead Jamie R.
Science of The Total Environment. 2008 400(1-3). p.396
Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection
Gimbert Laura J., Worsfold Paul J.
TrAC Trends in Analytical Chemistry. 2007 26(9). p.914
Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles
Hassellöv Martin, Readman James W., Ranville James F., Tiede Karen
Ecotoxicology. 2008 17(5). p.344
The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids‐amended field soil
Jesmer Alexander H., Velicogna Jessica R., Schwertfeger Dina M., Scroggins Richard P., Princz Juliska I.
Environmental Toxicology and Chemistry. 2017 36(10). p.2756
Engineered nanomaterials in soil: Sources of entry and migration pathways
Gladkova M. M., Terekhova V. A.
Moscow University Soil Science Bulletin. 2013 68(3). p.129
Dialysis of aqueous extracts of rocks as the method for studying the mobile species of chemical elements
Oleynikova G. A., Panova E. G.
Geochemistry International. 2014 52(8). p.702
Identification and quantification of trace metal(loid)s in water-extractable road dust nanoparticles using SP-ICP-MS
Avramescu Mary-Luyza, Casey Katherine, Levesque Christine, Chen Jian, Wiseman Clare, Beauchemin Suzanne
Science of The Total Environment. 2024 924 p.171720
Detection and characterization of engineered nanoparticles in food and the environment
Tiede Karen, Boxall Alistair B.A., Tear Steven P., Lewis John, David Helen, Hassellöv Martin
Food Additives & Contaminants: Part A. 2008 25(7). p.795
Application of Flow Field‐Flow Fractionation and Laser Sizing to Characterize Soil Colloids in Drained and Undrained Lysimeters
Gimbert Laura J., Haygarth Philip M., Worsfold Paul J.
Journal of Environmental Quality. 2008 37(4). p.1656
How do colloid separation and sediment storage methods affect water-mobilizable colloids and phosphorus? An insight into dam reservoir sediment
Nguyen Diep N., Grybos Malgorzata, Rabiet Marion, Deluchat Véronique
Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020 606 p.125505
Trace Elements in Soils (2010)
Du Laing Gijs
Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry
Li Lei, Wang Qiang, Yang Yuan, Luo Li, Ding Ru, Yang Zhao-Guang, Li Hai-Pu
Analytical Chemistry. 2019 91(15). p.9442
Behaviour of environmental aquatic nanocolloids when separated by split-flow thin-cell fractionation (SPLITT)
De Momi Anna, Lead Jamie. R.
Science of The Total Environment. 2008 405(1-3). p.317
Temporal variability of colloidal material in agricultural storm runoff from managed grassland using flow field-flow fractionation
Gimbert Laura J., Worsfold Paul J.
Journal of Chromatography A. 2009 1216(52). p.9120
Nanomaterials in the Environment (2015)
Gmiza Karima, Patricia Kouassi Anne, Kaur Brar Satinder, Mercier Guy, Blais Jean-François

Committee on Publication Ethics


Abstract Export Citation Get Permission