Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Articles citing this paper

Current status and future direction for examining engineered nanoparticles in natural systems

Manuel D. Montaño A F , Gregory V. Lowry B C , Frank von der Kammer D , Julie Blue E and James F. Ranville A
+ Author Affiliations
- Author Affiliations

A Colorado School of Mines, Department of Chemistry and Geochemistry, 1012 14th Street, Golden, CO 80401, USA.

B Carnegie Mellon University, Department of Civil and Environmental Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

C Center for Environmental Implications of Nanotechnology, 1201 Hamburg Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

D University of Vienna, Department of Environmental Geosciences, Althanstrasse 14 UZAII, A-1090 Vienna, Austria.

E The Cadmus Group, Inc., 100 Fifth Avenue, Suite 100, Waltham, MA 02451-8727, USA.

F Corresponding author. Email: jranvill@mines.edu




Manuel D. Montaño is a graduate student at the Colorado School of Mines earning a Ph.D. in Applied Chemistry. His current work focuses on developing techniques and methodology for the detection and characterisation of engineered nanomaterials in environmental samples, in particular utilising single particle inductively coupled plasma–mass spectrometry (ICP-MS) for analysis of ENPs in complex matrices. His previous work has included the examination of phytoremediation of heavy metals in wetland systems affected by acid mine drainage, heteroaggregation of engineered nanomaterials with naturally occurring nanoparticles and the development of single particle ICP-MS using microsecond dwell times for the purpose of environmental analysis of engineered nanomaterials.



Dr Gregory V. Lowry is a Professor of Environmental Engineering in the Department of Civil and Environmental Engineering at Carnegie Mellon University, Pittsburgh, PA. He is also Deputy Director of the National Science Foundation (NSF) and Environmental Protection Agency (EPA) Center for Environmental Implications of Nanotechnology (CEINT). His research and teaching focuses on environmental chemistry and nanotechnology, organic and inorganic aqueous geochemistry, and subsurface processes affecting ground water quality. Dr Lowry's professional interests include: aquatic chemistry, fate and transport of chemicals in surface and subsurface waters, soil and sediment treatment, groundwater remediation, carbon sequestration and environmental issues related to fossil energy. He has published over 90 scientific articles in leading environmental engineering and science journals and 10 related book chapters. He is an associate editor of Environmental Science: Nano (a Royal Society of Chemistry journal) and is currently editing a book on nanoscale iron particles for groundwater remediation.



Dr Frank von der Kammer completed his Ph.D. in 2005 with highest honour at Hamburg University of Technology, in the Department of Environmental Science and Technology. He is currently senior scientist and lecturer, the Head of Nanogeosciences Division and Vice Head of the Department for Environmental Geosciences at the University of Vienna. In the past, Frank has acted as a visiting Professor at the University of Pau and at the University of Aix-Marseille, France. His research interests include environmental colloids, their dynamic behaviour and interaction with trace elements, natural nanoscale processes, nanoparticle characterisation, engineered nanoparticles in the environment and the application of field flow fractionation to characterise nanoparticles in complex samples. He has published more than 50 peer-reviewed papers within both nano research and nanoparticle characterisation.



Dr Julie Blue is Director of Environmental Research at the Cadmus Group, Inc. She has 22 years of experience in environmental research and hydrology, with expertise in groundwater, surface water, drinking water and wastewater. She applies her technical skills in areas such as endocrine-disrupting compounds, emerging wastes and climate change. She leads Cadmus' work on the effects of climate change on water resources. Her expertise includes data analysis and mathematical modelling of contaminant transport. With an M.A. in English, an M.Sc. in Earth Sciences and a Ph.D. in Hydrology, Dr Blue has written extensively for numerous documents in the areas of source water protection, water quality and climate change and water resources.



Dr James F. Ranville is a Professor of Geochemistry in the Department of Chemistry and Geochemistry at the Colorado School of Mines. His research interests include environmental colloids, bioavailability and toxicity of trace metals and environmental nanometrology, specifically the development and the application of inductively coupled plasma–mass spectrometry and field flow fractionation to characterise nanoparticles in complex samples. He has published more than 60 peer-reviewed papers on the topics of aqueous geochemistry, nanoparticle research, and aquatic toxicology.

Environmental Chemistry 11(4) 351-366 https://doi.org/10.1071/EN14037
Submitted: 19 February 2014  Accepted: 7 May 2014   Published: 28 July 2014



102 articles found in Crossref database.

An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media
Prasad A., Lead J.R., Baalousha M.
Science of The Total Environment. 2015 537 p.479
Stormwater green infrastructures retain high concentrations of TiO2 engineered (nano)-particles
Baalousha Mohammed, Wang Jingjing, Nabi Md. Mahmudun, Loosli Frédéric, Valenca Renan, Mohanty Sanjay K., Afrooz Nabiul, Cantando Elizabeth, Aich Nirupam
Journal of Hazardous Materials. 2020 392 p.122335
Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters
Gondikas Andreas, von der Kammer Frank, Kaegi Ralf, Borovinskaya Olga, Neubauer Elisabeth, Navratilova Jana, Praetorius Antonia, Cornelis Geert, Hofmann Thilo
Environmental Science: Nano. 2018 5(2). p.313
Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and Its Application to Single-Particle Detection
Gundlach-Graham Alexander, Hendriks Lyndsey, Mehrabi Kamyar, Günther Detlef
Analytical Chemistry. 2018 90(20). p.11847
Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation
Falinski M. M., Turley R. S., Kidd J., Lounsbury A. W., Lanzarini-Lopes M., Backhaus A., Rudel H. E., Lane M. K. M., Fausey C. L., Barrios A. C., Loyo-Rosales J. E., Perreault F., Walker W. S., Stadler L. B., Elimelech M., Gardea-Torresdey J. L., Westerhoff P., Zimmerman J. B.
Environmental Science: Nano. 2020 7(11). p.3255
Nanomaterials for Soil Remediation (2021)
Azeez Luqmon
Legal and practical challenges in classifying nanomaterials according to regulatory definitions
Miernicki Martin, Hofmann Thilo, Eisenberger Iris, von der Kammer Frank, Praetorius Antonia
Nature Nanotechnology. 2019 14(3). p.208
Physicochemical Interactions of Engineered Nanoparticles and Plants (2023)
Yin Sheng, Ge Yulu, Marcos-Hernandez Mariana, Villagran Dino
Nanomaterials for Environmental and Agricultural Sectors (2023)
Patel Apekshakumari, Patel Nimisha, Ali Ahmad, Alim Hina
A Simple and Universal Technique To Extract One- and Two-Dimensional Nanomaterials from Contaminated Water
Tiwari Bishnu, Zhang Dongyan, Winslow Dustin, Lee Chee Huei, Hao Boyi, Yap Yoke Khin
ACS Applied Materials & Interfaces. 2015 7(47). p.26108
Platinum Nanoparticle Extraction, Quantification, and Characterization in Sediments by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry
Taskula Sara, Stetten Lucie, von der Kammer Frank, Hofmann Thilo
Nanomaterials. 2022 12(19). p.3307
Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation
Khanna Kanika, Kohli Sukhmeen Kaur, Handa Neha, Kaur Harsimran, Ohri Puja, Bhardwaj Renu, Yousaf Balal, Rinklebe Jörg, Ahmad Parvaiz
Ecotoxicology and Environmental Safety. 2021 222 p.112459
Characterization of nano-scale mineral dust aerosols in snow by single particle inductively coupled plasma mass spectrometry
Goodman Aaron J., Gundlach-Graham Alexander, Bevers Shaun G., Ranville James F.
Environmental Science: Nano. 2022 9(8). p.2638
Physicochemical Interactions of Engineered Nanoparticles and Plants (2023)
Xu Tao, Zheng Fan, Zhao Yong
Foreword to the Research Front on Detection of nanoparticles in the environment
Wilkinson Kevin J., Unrine Jason M., Lead Jamie R.
Environmental Chemistry. 2014 11(4). p.i
Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment
Donovan Ariel R., Adams Craig D., Ma Yinfa, Stephan Chady, Eichholz Todd, Shi Honglan
Chemosphere. 2016 144 p.148
A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals
Ermolin Mikhail S., Fedotov Petr S., Ivaneev Alexandr I., Karandashev Vasily K., Fedyunina Natalia N., Burmistrov Andrey A.
Chemosphere. 2018 210 p.65
Detection and quantification of anthropogenic titanium-, cerium-, and lanthanum-bearing home dust particles
Nabi Md Mahmudun, Wang Jingjing, Baalousha Mohammed
Environmental Science: Nano. 2023 10(5). p.1372
Metallic bionanocatalysts: potential applications as green catalysts and energy materials
Macaskie Lynne E., Mikheenko Iryna P., Omajai Jacob B., Stephen Alan J., Wood Joseph
Microbial Biotechnology. 2017 10(5). p.1171
Novel Multi-isotope Tracer Approach To Test ZnO Nanoparticle and Soluble Zn Bioavailability in Joint Soil Exposures
Laycock Adam, Romero-Freire Ana, Najorka Jens, Svendsen Claus, van Gestel Cornelis A. M., Rehkämper Mark
Environmental Science & Technology. 2017 51(21). p.12756
Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices
Mehrabi Kamyar, Günther Detlef, Gundlach-Graham Alexander
Environmental Science: Nano. 2019 6(11). p.3349
Volume determination of irregularly-shaped quasi-spherical nanoparticles
Attota Ravi Kiran, Liu Eileen Cherry
Analytical and Bioanalytical Chemistry. 2016 408(28). p.7897
Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products
Giubilato Elisa, Cazzagon Virginia, Amorim Mónica J. B., Blosi Magda, Bouillard Jacques, Bouwmeester Hans, Costa Anna Luisa, Fadeel Bengt, Fernandes Teresa F., Fito Carlos, Hauser Marina, Marcomini Antonio, Nowack Bernd, Pizzol Lisa, Powell Leagh, Prina-Mello Adriele, Sarimveis Haralambos, Scott-Fordsmand Janeck James, Semenzin Elena, Stahlmecke Burkhard, Stone Vicki, Vignes Alexis, Wilkins Terry, Zabeo Alex, Tran Lang, Hristozov Danail
Materials. 2020 13(20). p.4532
Separation and analysis of carbon nanomaterials in complex matrix
Hu Xiangang, Sun Anqi, Mu Li, Zhou Qixing
TrAC Trends in Analytical Chemistry. 2016 80 p.416
Seasonal occurrence and fate of nanoparticles in two biological wastewater treatment plants in Southern California
Smeraldi Josh, Tseng Linda Y., Dutta Ishir, Ganesh Rajagopalan, Rosso Diego
Water Environment Research. 2023 95(4).
Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context
Nowack Bernd
NanoImpact. 2017 8 p.38
Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture
Hofmann Thilo, Lowry Gregory Victor, Ghoshal Subhasis, Tufenkji Nathalie, Brambilla Davide, Dutcher John Robert, Gilbertson Leanne M., Giraldo Juan Pablo, Kinsella Joseph Matthew, Landry Markita Patricia, Lovell Wess, Naccache Rafik, Paret Mathews, Pedersen Joel Alexander, Unrine Jason Michael, White Jason Christopher, Wilkinson Kevin James
Nature Food. 2020 1(7). p.416
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration
Römer Isabella, Briffa Sophie Marie, Arroyo Rojas Dasilva Yadira, Hapiuk Dimitri, Trouillet Vanessa, Palmer Richard E., Valsami-Jones Eugenia, Mukherjee Amitava
PLOS ONE. 2019 14(6). p.e0217483
Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland
Mehrabi Kamyar, Kaegi Ralf, Günther Detlef, Gundlach-Graham Alexander
Environmental Science: Nano. 2021 8(5). p.1211
Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems
Laux Peter, Riebeling Christian, Booth Andy M., Brain Joseph D., Brunner Josephine, Cerrillo Cristina, Creutzenberg Otto, Estrela-Lopis Irina, Gebel Thomas, Johanson Gunnar, Jungnickel Harald, Kock Heiko, Tentschert Jutta, Tlili Ahmed, Schäffer Andreas, Sips Adriënne J. A. M., Yokel Robert A., Luch Andreas
Environmental Science: Nano. 2018 5(1). p.48
Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study
Baalousha Mohammed, Yang Yi, Vance Marina E., Colman Benjamin P., McNeal Samantha, Xu Jie, Blaszczak Joanna, Steele Meredith, Bernhardt Emily, Hochella Michael F.
Science of The Total Environment. 2016 557-558 p.740
New Pesticides and Soil Sensors (2017)
José Villaverde Juan, Sevilla-Morán Beatriz, López-Goti Carmen, Sandín-España Pilar, Luis Alonso-Prados José
Dual-elemental analysis of single particles using quadrupole-based inductively coupled plasma-mass spectrometry
Chun Ka-Him, Lum Judy Tsz-Shan, Leung Kelvin Sze-Yin
Analytica Chimica Acta. 2022 1192 p.339389
Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition (2015)
Montaño Manuel David
Measurement of CeO2 Nanoparticles in Natural Waters Using a High Sensitivity, Single Particle ICP-MS
Jreije Ibrahim, Azimzada Agil, Hadioui Madjid, Wilkinson Kevin J.
Molecules. 2020 25(23). p.5516
Single-Particle Mass Spectrometry of Titanium and Niobium Carbonitride Precipitates in Steels
Hegetschweiler Andreas, Borovinskaya Olga, Staudt Thorsten, Kraus Tobias
Analytical Chemistry. 2019 91(1). p.943
Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples
Laborda Francisco, Bolea Eduardo, Jiménez-Lamana Javier
Trends in Environmental Analytical Chemistry. 2016 9 p.15
Bridging the divide between human and environmental nanotoxicology
Malysheva Anzhela, Lombi Enzo, Voelcker Nicolas H.
Nature Nanotechnology. 2015 10(10). p.835
Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions
Patil Sayali S., Shedbalkar Utkarsha U., Truskewycz Adam, Chopade Balu A., Ball Andrew S.
Environmental Technology & Innovation. 2016 5 p.10
Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment
Loosli Frédéric, Wang Jingjing, Rothenberg Sarah, Bizimis Michael, Winkler Christopher, Borovinskaya Olga, Flamigni Luca, Baalousha Mohammed
Environmental Science: Nano. 2019 6(3). p.763
Single particle inductively coupled plasma mass spectrometry: A new method to detect geochemical anomalies in stream sediments
Goodman Aaron J., Ranville James F.
Journal of Geochemical Exploration. 2023 251 p.107231
High Resolution STEM-EELS Study of Silver Nanoparticles Exposed to Light and Humic Substances
Römer Isabella, Wang Zhi Wei, Merrifield Ruth C., Palmer Richard E., Lead Jamie
Environmental Science & Technology. 2016 50(5). p.2183
Monitoring Environmental Contaminants (2021)
Cornelis Geert, Tuoriniemi Jani, Montaño Manuel, Wagner Stephan, Gallego-Urrea Julian A., Mattsson Karin, Gondikas Andreas
Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS
Vidmar Janja, Oprčkal Primož, Milačič Radmila, Mladenovič Ana, Ščančar Janez
Science of The Total Environment. 2018 634 p.1259
Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization
Xu Fang
Chemosphere. 2018 212 p.662
Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS
Fréchette-Viens Laurie, Hadioui Madjid, Wilkinson Kevin J.
Talanta. 2019 200 p.156
Effect of platinum nanoparticles on morphological parameters of spring wheat seedlings in a substrate-plant system
Astafurova T, Zotikova A, Morgalev Yu, Verkhoturova G, Postovalova V, Kulizhskiy S, Mikhailova S
IOP Conference Series: Materials Science and Engineering. 2015 98 p.012004
Single Particle-Inductively Coupled Plasma Mass Spectroscopy Analysis of Metallic Nanoparticles in Environmental Samples with Large Dissolved Analyte Fractions
Schwertfeger D. M., Velicogna Jessica R., Jesmer Alexander H., Scroggins Richard P., Princz Juliska I.
Analytical Chemistry. 2016 88(20). p.9908
Sunscreens in Coastal Ecosystems (2020)
Lozano Clément, Givens Justina, Stien Didier, Matallana-Surget Sabine, Lebaron Philippe
Isotopic analysis of platinum from single nanoparticles using a high-time resolution multiple collector Inductively Coupled Plasma - Mass Spectroscopy
Yamashita Shuji, Ishida Mirai, Suzuki Toshihiro, Nakazato Masaki, Hirata Takafumi
Spectrochimica Acta Part B: Atomic Spectroscopy. 2020 169 p.105881
Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale
Ermolin Mikhail S., Fedotov Petr S., Malik Natalia A., Karandashev Vasily K.
Chemosphere. 2018 200 p.16
Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS
Laughton Stephanie, Laycock Adam, von der Kammer Frank, Hofmann Thilo, Casman Elizabeth A., Rodrigues Sónia M., Lowry Gregory V.
Journal of Nanoparticle Research. 2019 21(8).
How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils
Yi Zebang, Loosli Frédéric, Wang Jingjing, Berti Debora, Baalousha Mohammed
Environmental Chemistry Letters. 2020 18(1). p.215
Nano-Tracing: Recent Progress in Sourcing Tracing Technology of Nanoparticles※
Yang Xuezhi, Lu Dawei, Wang Weichao, Yang Hang, Liu Qian, Jiang Guibin
Acta Chimica Sinica. 2022 80(5). p.652
Regulatory ecotoxicity testing of nanomaterials – proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles
Hund-Rinke Kerstin, Baun Anders, Cupi Denisa, Fernandes Teresa F., Handy Richard, Kinross John H., Navas José M., Peijnenburg Willie, Schlich Karsten, Shaw Benjamin J., Scott-Fordsmand Janeck J.
Nanotoxicology. 2016 10(10). p.1442
Dispersion of natural nanomaterials in surface waters for better characterization of their physicochemical properties by AF4-ICP-MS-TEM
Loosli Frédéric, Yi Zybang, Wang Jingjing, Baalousha Mohammed
Science of The Total Environment. 2019 682 p.663
Determining what really counts: modeling and measuring nanoparticle number concentrations
Petersen Elijah J., Montoro Bustos Antonio R., Toman Blaza, Johnson Monique E., Ellefson Mark, Caceres George C., Neuer Anna Lena, Chan Qilin, Kemling Jonathan W., Mader Brian, Murphy Karen, Roesslein Matthias
Environmental Science: Nano. 2019 6(9). p.2876
Science and the Law: How the Communication of Science Affects Policy Development in the Environment, Food, Health, and Transport Sectors (2015)
Duster Thomas A.
Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity (2016)
Louie Stacey M., Dale Amy L., Casman Elizabeth A., Lowry Gregory V.
Development of a model (SWNano) to assess the fate and transport of TiO2 engineered nanoparticles in sewer networks
Kim Ki-Eun, Hwang Yu Sik, Jang Min-Hee, Song Jee Hey, Kim Hee Seok, Lee Dong Soo
Journal of Hazardous Materials. 2019 375 p.290
Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS
Montaño Manuel D., Majestic Brian J., Jämting Åsa K., Westerhoff Paul, Ranville James F.
Analytical Chemistry. 2016 88(9). p.4733
Improved extraction efficiency of natural nanomaterials in soils to facilitate their characterization using a multimethod approach
Loosli Frédéric, Yi Zebang, Wang Jingjing, Baalousha Mohammed
Science of The Total Environment. 2019 677 p.34
Biodissolution and cellular response to MoO3nanoribbons and a new framework for early hazard screening for 2D materials
Gray Evan P., Browning Cynthia L., Wang Mengjing, Gion Kyle D., Chao Eric Y., Koski Kristie J., Kane Agnes B., Hurt Robert H.
Environmental Science: Nano. 2018 5(11). p.2545
Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils
Praetorius Antonia, Gundlach-Graham Alexander, Goldberg Eli, Fabienke Willi, Navratilova Jana, Gondikas Andreas, Kaegi Ralf, Günther Detlef, Hofmann Thilo, von der Kammer Frank
Environmental Science: Nano. 2017 4(2). p.307
Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS
Frickenstein Alex N., Mukherjee Shirsha, Harcourt Tekena, He Yuxin, Sheth Vinit, Wang Lin, Malik Zain, Wilhelm Stefan
Analytical and Bioanalytical Chemistry. 2023 415(18). p.4353
Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials
Holden Patricia A., Gardea-Torresdey Jorge L., Klaessig Fred, Turco Ronald F., Mortimer Monika, Hund-Rinke Kerstin, Cohen Hubal Elaine A., Avery David, Barceló Damià, Behra Renata, Cohen Yoram, Deydier-Stephan Laurence, Ferguson P. Lee, Fernandes Teresa F., Herr Harthorn Barbara, Henderson W. Matthew, Hoke Robert A., Hristozov Danail, Johnston John M., Kane Agnes B., Kapustka Larry, Keller Arturo A., Lenihan Hunter S., Lovell Wess, Murphy Catherine J., Nisbet Roger M., Petersen Elijah J., Salinas Edward R., Scheringer Martin, Sharma Monita, Speed David E., Sultan Yasir, Westerhoff Paul, White Jason C., Wiesner Mark R., Wong Eva M., Xing Baoshan, Steele Horan Meghan, Godwin Hilary A., Nel André E.
Environmental Science & Technology. 2016 50(12). p.6124
Use of single particle inductively coupled plasma mass spectrometry for the study of zinc oxide nanoparticles released from fabric face masks
Suwanroek Wanida, Sumranjit Jitapa, Wutikhun Tuksadon, Siripinyanond Atitaya
Journal of Analytical Atomic Spectrometry. 2022 37(4). p.759
Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model
Garner Kendra L., Suh Sangwon, Keller Arturo A.
Environmental Science & Technology. 2017 51(10). p.5541
Stability of CeO2 nanoparticles from paints and stains: insights under controlled and environmental scenarios
Jreije Ibrahim, Azimzada Agil, Hadioui Madjid, Wilkinson Kevin J.
Environmental Science: Nano. 2022 9(9). p.3361
Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere
John Astrid, Küpper Miriam, Manders-Groot Astrid, Debray Bruno, Lacome Jean-Marc, Kuhlbusch Thomas
Atmosphere. 2017 8(5). p.84
Basic and advanced spectrometric methods for complete nanoparticles characterization in bio/eco systems: current status and future prospects
Borowska Magdalena, Jankowski Krzysztof
Analytical and Bioanalytical Chemistry. 2023 415(18). p.4023
Online microdroplet calibration for accurate nanoparticle quantification in organic matrices
Harycki Stasia, Gundlach-Graham Alexander
Analytical and Bioanalytical Chemistry. 2022 414(25). p.7543
Machine learning analysis to classify nanoparticles from noisy spICP-TOFMS data
Buckman Raven L., Gundlach-Graham Alexander
Journal of Analytical Atomic Spectrometry. 2023 38(6). p.1244
The Sustainability Challenge of Food and Environmental Nanotechnology: Current Status and Imminent Perceptions
Das Gitishree, Patra Jayanta Kumar, Paramithiotis Spiros, Shin Han-Seung
International Journal of Environmental Research and Public Health. 2019 16(23). p.4848
Fate assessment of engineered nanoparticles in solids dominated media – Current insights and the way forward
Peijnenburg W., Praetorius A., Scott-Fordsmand J., Cornelis G.
Environmental Pollution. 2016 218 p.1365
Single Particle ICP-MS: Advances toward routine analysis of nanomaterials
Montaño Manuel D., Olesik John W., Barber Angela G., Challis Katie, Ranville James F.
Analytical and Bioanalytical Chemistry. 2016 408(19). p.5053
Colloidal stability and aggregation kinetics of nanocrystal CdSe/ZnS quantum dots in aqueous systems: effects of pH and organic ligands
Li Chunyan, Hassan Asra, Palmai Marcell, Snee Preston T., Baveye Philippe C., Darnault Christophe J. G.
Journal of Nanoparticle Research. 2020 22(11).
Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review
Yadav Neelam, Garg Vinod Kumar, Chhillar Anil Kumar, Rana Jogender Singh
Chemosphere. 2021 280 p.130792
Transport of citrate and polymer coated gold nanoparticles (AuNPs) in porous media: Effect of surface property and Darcy velocity
Wen Chunyu, Broholm Mette M., Dong Jun, Uthuppu Basil, Jakobsen Mogens Havsteen, Fjordbøge Annika S.
Journal of Environmental Sciences. 2020 92 p.235
Mass spectrometry for the characterization and quantification of engineered inorganic nanoparticles
Costa-Fernández Jose M., Menéndez-Miranda Mario, Bouzas-Ramos Diego, Encinar Jorge Ruiz, Sanz-Medel Alfredo
TrAC Trends in Analytical Chemistry. 2016 84 p.139
Validating a Single-Particle ICP-MS Method to Measure Nanoparticles in Human Whole Blood for Nanotoxicology
Witzler Markus, Küllmer Fabian, Günther Klaus
Analytical Letters. 2018 51(4). p.587
Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils
Pradas del Real Ana Elena, Castillo-Michel Hiram, Kaegi Ralf, Larue Camille, de Nolf Wout, Reyes-Herrera Juan, Tucoulou Rémi, Findling Nathaniel, Salas-Colera Eduardo, Sarret Géraldine
Environmental Science: Nano. 2018 5(12). p.2853
Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS)
Donahue Nathan D., Francek Emmy R., Kiyotake Emi, Thomas Emily E., Yang Wen, Wang Lin, Detamore Michael S., Wilhelm Stefan
Analytical and Bioanalytical Chemistry. 2020 412(22). p.5205
Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples
Laborda Francisco, Bolea Eduardo, Cepriá Gemma, Gómez María T., Jiménez María S., Pérez-Arantegui Josefina, Castillo Juan R.
Analytica Chimica Acta. 2016 904 p.10
Agglomeration potential of TiO2 in synthetic leachates made from the fly ash of different incinerated wastes
He Xu, Mitrano Denise M., Nowack Bernd, Bahk Yeon Kyoung, Figi Renato, Schreiner Claudia, Bürki Melanie, Wang Jing
Environmental Pollution. 2017 223 p.616
Mobility of electrostatically and sterically stabilized gold nanoparticles (AuNPs) in saturated porous media
Fjordbøge Annika S., Uthuppu Basil, Jakobsen Mogens H., Fischer Søren V., Broholm Mette M.
Environmental Science and Pollution Research. 2019 26(28). p.29460
Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture (2021)
Campos Estefânia Vangelie Ramos
Nanoparticles and Plant-Microbe Interactions (2023)
Barros Juliana, Rai Akhilesh, Kumar Santosh, Seena Sahadevan
Results of an interlaboratory comparison for characterization of Pt nanoparticles using single-particle ICP-TOFMS
Hendriks Lyndsey, Brünjes Robert, Taskula Sara, Kocic Jovana, Hattendorf Bodo, Bland Garret, Lowry Gregory, Bolea-Fernandez Eduardo, Vanhaecke Frank, Wang Jingjing, Baalousha Mohammed, von der Au Marcus, Meermann Björn, Holbrook Timothy Ronald, Wagner Stephan, Harycki Stasia, Gundlach-Graham Alexander, von der Kammer Frank
Nanoscale. 2023 15(26). p.11268
Environmental fate of multiwalled carbon nanotubes and graphene oxide across different aquatic ecosystems
Avant Brian, Bouchard Dermont, Chang Xiaojun, Hsieh Hsin-Se, Acrey Brad, Han Yanlai, Spear Jessica, Zepp Richard, Knightes Christopher D.
NanoImpact. 2019 13 p.1
Implications of Engineered Nanomaterials in Drinking Water Sources
Good Kelly D., Bergman Lauren E., Klara Steven S., Leitch Megan E., VanBriesen Jeanne M.
Journal AWWA. 2016 108(1).
Characterization of Nanomaterials in Complex Environmental and Biological Media (2015)
Ranville James, Montano Manuel D.
Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS
Montaño Manuel D., Cuss Chad W., Holliday Haley M., Javed Muhammad B., Shotyk William, Sobocinski Kathryn L., Hofmann Thilo, Kammer Frank von der, Ranville James F.
ACS Earth and Space Chemistry. 2022 6(4). p.943
Analysis and Characterisation of Metal-Based Nanomaterials (2021)
Gundlach-Graham Alexander
Metrology and Standardization of Nanotechnology (2017)
Nelson Bryant C., Reipa Vytas
Modeling nanomaterial fate and uptake in the environment: current knowledge and future trends
Baalousha M., Cornelis G., Kuhlbusch T. A. J., Lynch I., Nickel C., Peijnenburg W., van den Brink N. W.
Environmental Science: Nano. 2016 3(2). p.323
Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS
Navratilova Jana, Praetorius Antonia, Gondikas Andreas, Fabienke Willi, von der Kammer Frank, Hofmann Thilo
International Journal of Environmental Research and Public Health. 2015 12(12). p.15756
Detection of nanoparticles in Dutch surface waters
Peters Ruud J.B., van Bemmel Greet, Milani Nino B.L., den Hertog Gerco C.T., Undas Anna K., van der Lee Martijn, Bouwmeester Hans
Science of The Total Environment. 2018 621 p.210
How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles?
Desmau Morgane, Carboni Andrea, Le Bars Maureen, Doelsch Emmanuel, Benedetti Marc F., Auffan Mélanie, Levard Clément, Gelabert Alexandre
Frontiers in Environmental Science. 2020 8
Characterization of a high-sensitivity ICP-TOFMS instrument for microdroplet, nanoparticle, and microplastic analyses
Harycki Stasia, Gundlach-Graham Alexander
Journal of Analytical Atomic Spectrometry. 2023 38(1). p.111
Feasibility study on the differentiation between engineered and natural nanoparticles based on the elemental ratios
Kim Woocheol, Yeom Changju, Lee Hyejin, Sung Hwakyung, Jo Eunhye, Eom Ig-chun, Kim Younghun
Korean Journal of Chemical Engineering. 2017 34(12). p.3208
Incidence of metal-based nanoparticles in the conventional wastewater treatment process
Cervantes-Avilés Pabel, Keller Arturo A.
Water Research. 2021 189 p.116603

Committee on Publication Ethics

Abstract Full Text PDF (1.7 MB) Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email