Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Mycosporines in Extremophilic Fungi—Novel Complementary Osmolytes?

Tina Kogej A , Cene Gostinčar A , Marc Volkmann B , Anna A. Gorbushina B and Nina Gunde-Cimerman A C
+ Author Affiliations
- Author Affiliations

A University of Ljubljana, Biotechnical Faculty, Department of Biology, SI-1000 Ljubljana, Slovenia.

B Geomicrobiology, Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany.

C Corresponding author. Email: nina.gunde-cimerman@bf.uni-lj.si

Environmental Chemistry 3(2) 105-110 https://doi.org/10.1071/EN06012
Submitted: 12 February 2006  Accepted: 24 March 2006   Published: 5 May 2006

Environmental Context. The occurrence of fungi in extreme environments, particularly in hypersaline water and in subglacial ice, is much higher than was previously assumed. When glacial ice melts as a result of calving or surface ablations, these organisms are released in the Arctic soil or sea and have a yet uninvestigated impact on the environment. Knowledge of the metabolites of these extremophilic fungi is important because they could provide signature molecules in the environment, but they can also contribute nutrients to the otherwise oligotrophic polar conditions. In the present work, we examine the osmotic behaviour of fungi grown under hypersaline conditions.

Abstract. Fungi isolated from hypersaline waters and polar glacial ice were screened for the presence of mycosporines and mycosporine-like amino acids under non-saline and saline growth conditions. Two different mycosporines and three unidentified UV-absorbing compounds were detected by high performance liquid chromatography in fungal isolates from hypersaline waters and polar glacial ice. It was shown for the first time that the mycosporine–glutaminol–glucoside in halophilic and halotolerant black yeasts from salterns was higher on saline growth medium. This substance might act as a supplementary compatible solute in some extremophilic black yeasts exposed to saline growth conditions.

Keywords. : halophilic/halotolerant—mycosporine-like amino acids (MAAs) — organic osmolyte — salt stress


Acknowledgements

This work was supported by the Ministry of Higher Education and Technology of the Republic of Slovenia in the form of young researcher’s grants to T. Kogej and C. Gostinčar. A. A. Gorbushina acknowledges support through the Dorothea Erxleben scholarship of the State of Lower Saxony (Germany) and by the Deutsche Forschungsgemeinschaft grant Go 897/2–2 (M. Volkmann and A. A. Gorbushina).


References


[1]   N. Gunde-Cimerman, P. Zalar, G. S. de Hoog, A. Plemenitaš, FEMS Microbiol. Ecol. 2000, 32,  235.
         open url image1

[2]   G. S. de Hoog, E. Gueho, F. Masclaux, A. H. G. Gerrits van den Ende, K. J. Kwon-Chung, M. R. McGinnis, J. Med. Vet. Mycol. 1995, 33,  339.
         open url image1

[3]   K. Sterflinger, Antonie Van Leeuwenhoek 1998, 74,  271.
        | CrossRef |   open url image1

[4]   L. Butinar, P. Zalar, J. C. Frisvad, N. Gunde-Cimerman, FEMS Microbiol. Ecol. 2005, 51,  155.
        | CrossRef |   open url image1

[5]   P. Zalar, G. S. de Hoog, H. J. Schroers, J. M. Frank, N. Gunde-Cimerman, Antonie Van Leeuwenhoek 2005, 87,  311.
        | CrossRef |   open url image1

[6]   Gunde-Cimerman N., Butinar L., Sonjak S., Turk M., Uršič V., Zalar P., A. Plemenitaš, in Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya (Eds N. Gunde-Cimerman, A. Oren, A. Plemenitaš) 2005, p. 397 (Springer: Dordrecht, The Netherlands).

[7]   H. S. Vishniac, S. Onofri, Antonie Van Leeuwenhoek 2003, 83,  231.
        | CrossRef |   open url image1

[8]   E. A. Galinski, Adv. Microb. Physiol. 1995, 37,  272.
         open url image1

[9]   J. K. Zhu, Trends Plant Sci. 2001, 6,  66.
        | CrossRef |   open url image1

[10]   M. F. Roberts, Saline Systems 2005, 1,  5.
        | CrossRef |   open url image1

[11]   Ramos J., in Recent Research Developments in Microbiology (Ed. S. G. Pandalai) 1999, p. 377 (Signpost: Trivandrum, India).

[12]   R. Lahav, P. Fareleira, A. Nejidat, A. Abeliovich, Microb. Ecol. 2002, 43,  388.
        | CrossRef |   open url image1

[13]   A. Blomberg, L. Adler, Adv. Microb. Physiol. 1992, 33,  145.
         open url image1

[14]   G. E. Pfyffer, B. U. Pfyffer, D. M. Rast, Sydowia 1986, 39,  160.
         open url image1

[15]   J. K. Zhu, Curr. Opin. Plant Biol. 2001, 4,  401.
        | CrossRef |   open url image1

[16]   W. Wang, B. Vinocur, A. Altman, Planta 2003, 218,  1.
        | CrossRef |   open url image1

[17]   A. Blomberg, L. Adler, Adv. Microb. Physiol. 1992, 33,  145.
         open url image1

[18]   A. Oren, Geomicrobiol. J. 1997, 14,  231.
         open url image1

[19]   W. M. Bandaranayake, Nat. Prod. Rep. 1998, 15,  159.
        | CrossRef |   open url image1

[20]   D. Libkind, P. Perez, R. Sommaruga, C. Dieguez Mdel, M. Ferraro, S. Brizzio, H. Zagarese, M. van Broock, Photochem. Photobiol. Sci. 2004, 3,  281.
        | CrossRef |   open url image1

[21]   M. Volkmann, K. Whitehead, H. Rutters, J. Rullkotter, A. A. Gorbushina, Rapid Commun. Mass Spectrom. 2003, 17,  897.
        | CrossRef |   open url image1

[22]   C. M. Leach, Can. J. Bot. 1965, 43,  185.
         open url image1

[23]   E. J. Trione, C. M. Leach, J. T. Mutch, Nature 1966, 212,  163.
         open url image1

[24]   A. A. Gorbushina, K. Whitehead, T. Dornieden, A. Niesse, A. Schulte, J. I. Hedges, Can. J. Bot. 2003, 81,  131.
        | CrossRef |   open url image1

[25]   S. Hohmann, Microbiol. Mol. Biol. Rev. 2002, 66,  300.
        | CrossRef |   open url image1

[26]   P. Zalar, G. S. de Hoog, N. Gunde-Cimerman, Stud. Mycol. 1999, 43,  38.
         open url image1

[27]   J. Smedsgaard, J. Chromatogr. A 1997, 760,  264.
        | CrossRef |   open url image1

[28]   S. Sonjak, J. C. Frisvad, N. Gunde-Cimerman, FEMS Microbiol. Ecol. 2005, 53,  51.
        | CrossRef |   open url image1

[29]   T. Kogej, J. Ramos, A. Plemenitaš, N. Gunde-Cimerman, Appl. Environ. Microbiol. 2005, 71,  6600.
        | CrossRef |   open url image1

[30]   M. Volkmann, A. A. Gorbushina, FEMS Microbiol. Lett. 2006, 255,  286.
        | CrossRef |   open url image1

[31]   A. Portwich, F. Garcia-Pichel, Arch. Microbiol. 1999, 172,  187.
        | CrossRef |   open url image1

[32]   J. M. Shick, W. C. Dunlap, Annu. Rev. Physiol. 2002, 64,  223.
        | CrossRef |   open url image1

[33]   D. Libkind, R. Sommaruga, H. Zagarese, M. van Broock, Syst. Appl. Microbiol. 2005, 28,  749.
        | CrossRef |   open url image1

[34]   de Hoog G. S., Zalar P., A. H. G. Gerrits van den Ende, N. Gunde-Cimerman, in Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya (Eds N. Gunde-Cimerman, A. Oren, A. Plemenitaš) 2005, p. 371 (Springer: Dordrecht, The Netherlands).



Rent Article (via Deepdyve) Export Citation Cited By (26)