Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices

Julien Rachou A , Christian Gagnon B and Sébastien Sauvé A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada.

B St. Lawrence Centre, Environment Canada, Montreal, Quebec H2Y 2E7, Canada.

C Corresponding author: sebastien.sauve@umontreal.ca

Environmental Chemistry 4(2) 90-97 https://doi.org/10.1071/EN06036
Submitted: 7 June 2006  Accepted: 28 March 2007   Published: 17 April 2007

Environmental context. The toxicity of metals in the environment is controlled by several parameters including total metal concentration, pH and organic and inorganic ligands (type and concentration). The characterisation of different metal pools in natural matrices (e.g. seawater, soil) is important for the evaluation of their toxic impact. The copper ion-selective electrode (Cu-ISE) is a method of choice for the analytical determination of the speciation (i.e. chemical forms) of divalent copper in natural matrices. This paper clarifies several operational parameters in the hope of decreasing variability of results and increasing the application domain of the Cu-ISE.

Abstract. The determination of free copper concentrations in natural matrices is critical for the evaluation of copper toxicity. The ISE is one of the few analytical means for determining the direct speciation of free metal species. We have refined the method for low salinity and low ionic strength solutions for application with soil water extracts or fresh waters. Moreover, we have detailed and standardised a method for using a Cu-ISE with an autotitrator. The standardisation shows a good response and allows significant time saving (under 2 h for the calibration). The results obtained using the ISE are compared with those predicted in the presence of different organic ligands or even the lower free Cu2+ activities resulting from the formation of Cu hydroxyl species. The method was validated for the determination of Cu speciation at environmentally relevant free Cu2+ activity, i.e. ranging between 10-14 to 10-4 M. The chemical equilibrium calculations were made using the MINEQL+ software and the results agree well for pH values between 3 and 10. In terms of precision, the standard deviations of the measured values never exceed 0.1 units, and in terms of accuracy, the measured values were very close to the nominal values, within a range of 0.1. Outside the optimal pH range, the electrode yields higher activity than expected.


Acknowledgements

The authors gratefully acknowledge the support of the NSERC-MITHE research network. A complete list of sponsors is available at www.mithe-rn.org.


References


[1]   J. Song, F. J. Zhao, Y. M. Luo, S. P. McGrath, H. Zhang, Environ. Pollut. 2004, 128,  307.
        | CrossRef |   

[2]   K. H. Coale, K. W. Bruland, Limnol. Oceanogr. 1988, 33,  1084.
         

[3]   S. Sauvé, M. B. McBride, W. A. Norvell, W. H. Hendershot, Water Air Soil Pollut. 1997, 100,  133.
        | CrossRef |   

[4]   E. Samson, G. Lemaire, J. Marchand, J. J. Beaudoin, Comp. Mater. Sci. 1999, 15,  285.
        | CrossRef |   

[5]   M. Gardner, S. Comber, Chem. Spec. Bioavailab. 2003, 15,  1.
         

[6]   F. J. Stevenson, Soil Sci. Soc. Am. J. 1976, 40,  665.
         

[7]   G. M. P. Morrison, T. M. Florence, Electroanal. 1989, 1,  107.
        | CrossRef |   

[8]   J. R. Procopio, M. D. M. Viana, L. H. Hernandez, Environ. Sci. Technol. 1997, 31,  3081.
        | CrossRef |   

[9]   A. Lebourg, T. Sterckeman, H. Ciesielski, N. Proix, J. Environ. Qual. 1998, 27,  584.
         

[10]   M. M. Minnich, M. B. McBride, Soil Sci. Soc. Am. J. 1987, 51,  568.
         

[11]   A. K. Salam, P. A. Helmke, Geoderma 1998, 83,  281.
        | CrossRef |   

[12]   U. Palmqvist, E. Ahlberg, L. Lovgren, S. Sjoberg, J. Colloid Interface Sci. 1997, 196,  254.
        | CrossRef |   

[13]   C. E. Martínez, M. B. McBride, Environ. Sci. Technol. 1999, 33,  745.
        | CrossRef |   

[14]   T. F. Rozan, G. Benoit, Environ. Sci. Technol. 1999, 33,  1766.
        | CrossRef |   

[15]   I. Rivera-Duarte, A. Zirino, Environ. Sci. Technol. 2004, 38,  3139.
        | CrossRef |   

[16]   M. B. Kogut, M. Voelker, Environ. Sci. Technol. 2003, 37,  509.
        | CrossRef |   

[17]   S. Meylan, N. Odzak, R. Behra, L. Sigg, Anal. Chim. Acta 2004, 510,  91.
        | CrossRef |   

[18]   S. C. Apte, G. E. Batley, K. C. Bowles, P. L. Brown, N. Creighton, L. T. Hales, R. V. Hyne, M. Julli, et al. Environ. Chem. 2005, 2,  320.
        | CrossRef |   

[19]   I. Rivera-Duarte, G. Rozen, D. Lapota, D. B. Chadwick, L. Kear-Padilla, A. Zirino, Environ. Sci. Technol. 2005, 39,  1542.
        | CrossRef |   

[20]   W. J. Blaedel, D. E. Dinwiddie, Anal. Chem. 1974, 46,  873.
        | CrossRef |   

[21]   N. Cavallaro, M. B. McBride, Soil Sci. Soc. J. Am. 1980, 44,  881.
         

[22]   A. Avdeef, J. Zabronsky, H. H. Stuting, Anal. Chem. 1983, 55,  298.
         

[23]   R. M. Town, H. K. J. Powell, Anal. Chim. Acta 1993, 279,  221.
        | CrossRef |   

[24]   S. Sauvé, M. B. McBride, W. H. Hendershot, Arch. Environ. Contam. Toxicol. 1995, 29,  373.
        | CrossRef |   

[25]   E. M. Logan, I. D. Pulford, G. T. Cook, A. B. MacKenzie, Eur. J. Soil Sci. 1997, 48,  685.
        | CrossRef |   

[26]   J. Gulens, Ion Sel. Electrode R. 1987, 9,  127.
         

[27]   S. L. Belli, A. Zirino, Anal. Chem. 1993, 65,  2583.
        | CrossRef |   

[28]   A. Zirino, D. A. VanderWeele, S. L. Belli, R. DeMarco, D. J. Mackey, Mar. Chem. 1998, 61,  173.
        | CrossRef |   

[29]   Schecher W. D., McAvoy D. C., MINEQL+: A chemical equilibrium program for personal computers – User’s manual 2003 (Environmental Research Software: Hallowell, ME).

[30]   A. Zirino, R. De Marco, I. Rivera, B. Pejcic, Electroanal. 2002, 14,  493.
        | CrossRef |   

[31]   H. Xue, W. G. Sunda, Environ. Sci. Technol. 1997, 31,  1902.
        | CrossRef |   

[32]   K. G. J. Nierop, B. Jansen, J. A. Vrugt, J. M. Verstraten, Chemosphere 2002, 49,  1191.
        | CrossRef |   

[33]   M. V. Cheshire, D. B. McPhail, M. L. Berrow, Sci. Total Environ. 1994, 152,  63.
        | CrossRef |   

[34]   L. Weng, E. J. M. Temminghoff, S. Lofts, E. Tipping, W. H. Van Riemsdijk, Environ. Sci. Technol. 2002, 36,  4804.
        | CrossRef |   

[35]   S. E. Bryan, E. Tipping, J. Hamilton-Taylor, Comp. Biochem. Phys. C 2002, 133,  37.
         

[36]   S. P. Gouvêa, A. A. H. Vieira, A. T. Lombardi, Chemosphere 2005, 60,  1332.
        | CrossRef |   

[37]   H. Xue, W. Sunda, Environ. Sci. Technol. 1997, 31,  1902.
        | CrossRef |   

[38]   S. Sauvé, Environ. Toxicol. Chem. 2006, 25,  854.
        | CrossRef |   

[39]   A. Dumestre, S. Sauvé, M. McBride, P. Baveye, J. Berthelin, Arch. Environ. Contam. Toxicol. 1999, 36,  124.
        | CrossRef |   

[40]   M. McBride, C. E. Martínez, S. Sauvé, Soil Sci. Soc. Am. J. 1998, 62,  1542.
         

[41]   F. Courchesne, N. Kruyts, P. Legrand, Environ. Toxicol. Chem. 2006, 25,  635.
        | CrossRef |   

[42]   J. Cao, K. C. Lam, R. W. Dawson, W. X. Liu, S. Tao, Chemosphere 2004, 54,  507.
        | CrossRef |   

[43]   R. De Marco, Mar. Chem. 1996, 55,  389.
        | CrossRef |   

[44]   R. S. Eriksen, D. J. Mackey, R. van Dam, B. Nowak, Mar. Chem. 2001, 74,  99.
        | CrossRef |   


Full Text PDF (298 KB) Export Citation Cited By (40)